已知sinα=
1
3
且α為第二象限的角,則tanα=
-
2
4
-
2
4
分析:先根據(jù)所給的α所在的象限判斷出cosα的正負,然后利用同角三角函數(shù)的正弦和余弦之間的基本關系,根據(jù)sinα的值求得cosα的值,利用正弦值比余弦值求得tanα.
解答:解:∵α是第二象限角,
∴cosα<0
∴cosα=-
1-
1
9
=-
2
2
3
,
∴tanα=
sinα
cosα
=-
1
2
2
=-
2
4

故答案為:-
2
4
點評:本題考查同角三角函數(shù)間的基本關系的應用,本題解題的關鍵是正確判斷要求的三角函數(shù)的符號,熟練應用同角的三角函數(shù)之間的關系,本題是一個基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知sin(π+α)=-
13
,且α是第二象限角,則sin2α=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,且α是第二象限的角.
(1)求sin(α-
π
6
)
的值;
(2)求cos2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=-
1
3
,且α為第三象限角.
(Ⅰ)求sin2α的值;
(Ⅱ)求
sin(α-2π)•cos(2π-α)
sin2(α+
π
2
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα=
1
3
,且α∈(
π
2
,π)
,則tanα=
-
2
4
-
2
4

查看答案和解析>>

同步練習冊答案