【題目】已知點(diǎn)在圓E上,過點(diǎn)的直線l與圓E相切.

求圓E的方程;

求直線l的方程.

【答案】(Ⅰ);(Ⅱ)直線l的方程為.

【解析】

根據(jù)題意,設(shè)圓E的圓心為,半徑為r;將AB、C三點(diǎn)的坐標(biāo)代入圓E的方程可得,即可得圓E的方程;根據(jù)題意,分2種情況討論:,當(dāng)直線l的斜率不存在時,直線l的方程為,驗(yàn)證可得此時符合題意,,當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,即,由直線與圓的位置關(guān)系計算可得k的值,可得此時直線的方程,綜合即可得答案.

根據(jù)題意,設(shè)圓E的圓心為,半徑為r

則圓E的方程為,

又由點(diǎn),,在圓E上,

則有,解可得,

即圓E的方程為

根據(jù)題意,分2種情況討論:

,當(dāng)直線l的斜率不存在時,直線l的方程為,與圓M相切,符合題意;

,當(dāng)直線l的斜率存在時,設(shè)直線l的方程為,即

圓心E到直線l的距離,解可得

則直線l的方程為,即

綜合可得:直線l的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長為8.

(1)求橢圓的方程;

(2)直線過點(diǎn),且與橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的兩條相鄰對稱軸之間的距離為

1)求的值;

2)將函數(shù)的圖象向左平移個單位,再將所得函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,得到函數(shù)的圖象,若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次摸取獎票的活動中,已知中獎的概率為,若票倉中有足夠多的票則下列說法正確的是  

A. 若只摸取一張票,則中獎的概率為

B. 若只摸取一張票,則中獎的概率為

C. 100個人按先后順序每人摸取1張票則一定有2人中獎

D. 100個人按先后順序每人摸取1張票,則第一個摸票的人中獎概率最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ω0,0φπ,直線是函數(shù)fx)=sinωx+φ)圖象的兩條相鄰的對稱軸,若將函數(shù)fx)圖象上每一點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)變?yōu)樵瓉淼?/span>2倍,則得到的圖象的函數(shù)解析式是(

A.B.

C.y2cos2xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,,,中,,則的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體的棱長為,點(diǎn)分別棱樓的中點(diǎn),下列結(jié)論中正確的是(

A.四面體的體積等于B.平面

C.平面D.異面直線所成角的正切值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),動圓C經(jīng)過點(diǎn),且被y軸截得的弦長為2p,記動圓圓心C的軌跡為E

求軌跡E的方程;

求證:在軌跡E上存在點(diǎn)A,B,使得為坐標(biāo)原點(diǎn)是以A為直角頂點(diǎn)的等腰直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若不等式上恒成立,求a的取值范圍;

2)若函數(shù)恰好有三個零點(diǎn),求b的值及該函數(shù)的零點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案