17.已知直線l經(jīng)過點P(2,$\frac{7}{4}$),且斜率為$\frac{3}{4}$;
(1)求直線l的方程;
(2)若直線m與l平行,且點P到直線m的距離為3,求直線m的方程.

分析 (1)直接根據(jù)點斜式方程即可得到直線方程,
(2)根據(jù)題意可設(shè)直線m的方程為3x-4y+n=0,根據(jù)點到直線的距離公式求出n的值即可.

解答 解:(1)∵直線l經(jīng)過點$P(2,\frac{7}{4})$,且斜率$k=\frac{3}{4}$,代入直線點斜式方程得,$y-\frac{7}{4}=\frac{3}{4}(x-2)$ 即3x-4y+1=0此為直線l的方程.
(2)根據(jù)題意可設(shè)直線m的方程為3x-4y+n=0,
則點P到直線m的距離$d=\frac{\left|3×2-4×\frac{7}{4}+n\right|}{\sqrt{{{3}^{2}}+{{(-4)}^{2}}}}=\frac{\left|-1+n\right|}{5}$依題意得$\frac{\left|-1+n\right|}{5}=3$ 解得n=16或n=-14∴,
直線m的方程為3x-4y+16=0或3x-4y-14=0.

點評 本題考查了點斜式方程和點到直線的距離公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知:命題P:函數(shù)y=logax在定義域上單調(diào)遞減;命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立;若“P或Q”是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=4t\\ y=4t+a\end{array}\right.({t為參數(shù)})({a∈R})$,圓C的極坐標(biāo)方程為ρ=4cosθ-4sinθ.
(1)將直線l的參數(shù)方程化為普通方程,以及將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若圓C上有且僅有三個點到直線l的距離為$\sqrt{2}$,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=alnx-ax(a∈R).
(I)討論f(x)的單調(diào)性;
(Ⅱ)求證:$\frac{ln2}{2}$•$\frac{ln3}{3}$•$\frac{ln4}{4}$…$\frac{lnn}{n}$<$\frac{1}{n}$(n∈N*且n≥2 )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)f(x)=$\frac{x^2}{x-1}$的單調(diào)遞減區(qū)間是[0,1),(1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=2,an+1=$\left\{\begin{array}{l}{\frac{1}{2}({a}_{n}+n)(n為奇數(shù))}\\{2{a}_{n}-n(n為偶數(shù))}\end{array}\right.$,設(shè)bn=a2n+1+4n-2,n∈N*,求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.參數(shù)方程$\left\{{\begin{array}{l}{x=4sinθ}\\{y=5cosθ}\end{array}}\right.$表示的曲線是( 。
A.焦點在x軸上的橢圓B.焦點在y軸上的橢圓
C.過原點的直線D.圓心在原點的圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若圓(x-3)2+(y+5)2=r2上有且只有兩個點到直線4x-3y=17的距離為1,則半徑r的取值范圍是1<r<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=$\frac{1}{{\sqrt{2x-4}}}$的定義域是( 。
A.(0,2)B.[2,+∞)C.(-∞,2]D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊答案