已知A(1,3),B(3,x),若向量
a
=(-2,x)與
AB
垂直,則x=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用向量垂直與數(shù)量積的關(guān)系即可得出.
解答: 解:
AB
=(3,x)-(1,3)=(2,x-3),
∵向量
a
=(-2,x)與
AB
垂直,
a
AB
=-4+x(x-3)=0,
化為x2-3x-4=0,解得x=-1或4.
故答案為:-1或4.
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在二項(xiàng)式(x-
1
x
5的展開式中,含x3的項(xiàng)的系數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱錐S-ABC底面邊長(zhǎng)和高都是
3
,E是邊BC的中點(diǎn),動(dòng)點(diǎn)P在三棱錐表面上運(yùn)動(dòng),并且總保持
PE
AC
=0
,則動(dòng)點(diǎn)P的軌跡的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式-2≤x2+ax+b≤1(a≠0)的解集中恰有一個(gè)元素,則b+
1
a2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知棱長(zhǎng)為1的正方體中ABCD-A1B1C1D1中,P,Q是面對(duì)角線A1C1上的兩個(gè)不同動(dòng)點(diǎn),給出以下判斷:
①存在P,Q兩點(diǎn),使BP⊥DQ;
②存在P,Q兩點(diǎn),使BP,DQ與直線AD成30°角;
③若PQ=1,則四面體BDPQ的體積一定是定值;
④若PQ=1,則四面體BDPQ的表面積一定是定值;
⑤若PQ=1,則四面體BDPQ在該正方體六個(gè)面上的正投影的面積的和為定值.
其中真命題的是
 
(寫出所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
|=2,|
b
|=1,其夾角為120°.若對(duì)向量滿足(
m
-
a
)•(
m
-
b
)=0,則|
m
|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若sin(α+β)=
3
5
,sin(α-β)=
1
5
,則
tanα
tanβ
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)動(dòng)點(diǎn)P到點(diǎn)A(-1,0)和B(1,0)的距離分別為d1和d2,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得d1d2sin2θ=λ(如圖所示),那么點(diǎn)P的軌跡是( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是一個(gè)幾何體的三視圖,其中“正視圖”是一個(gè)邊長(zhǎng)為2的正方形,“俯視圖”是一個(gè)正三角形,則這個(gè)三視圖中“側(cè)視圖”的面積為( 。
A、
3
2
B、
3
C、2
3
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案