【題目】已知定點,圓C

(1)過點向圓C引切線l,求切線l的方程;

(2)過點A作直線 交圓C于P,Q,且,求直線的斜率k;

(3)定點M,N在直線 上,對于圓C上任意一點R都滿足,試求M,N兩點的坐標.

【答案】1x223

【解析】解:(1)①當直線l與x軸垂直時,易知x=2符合題意;

②當直線l的斜率存在時,設(shè)直線l的方程為y=k(x-2).

即kx-y-2k=0.

若直線l與圓C相切,則有,解得k=,

∴直線l:

故直線l的方程為x=2或

(2)設(shè),由 知點P是AQ的中點,所以點Q的坐標為 .

由于兩點P,Q均在圓C上,故 , ①

,即, ②

②—①得 , ③

由②③解得

(其他方法類似給分)

(3)設(shè) ,則

, ⑤

由④、⑤得 ,⑥

由于關(guān)于 的方程⑥有無數(shù)組解,所以

解得

所以滿足條件的定點有兩組

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x﹣ ,且f(2)=
(1)求實數(shù)a的值;
(2)判斷該函數(shù)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn , 已知2Sn=3n+3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an , 求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為Sn , 若對于任意的正整數(shù)n都有Sn=2an﹣3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式;
(2)求數(shù)列{nan}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的極值;

2)若時,函數(shù)有且只有一個零點,求實數(shù)的值;

3,對于區(qū)間上的任意兩個不相等的實數(shù),都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知cosα= ,cos(α﹣β)= ,且0<β<α< ,
(1)求tanα的值;
(2)求β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】長沙市物價監(jiān)督部門為調(diào)研某公司新開發(fā)上市的一種產(chǎn)品銷售價格的合理性,對某公司的該產(chǎn)品的銷量與價格進行了統(tǒng)計分析,得到如下數(shù)據(jù)和散點圖:

定價

10

20

30

40

50

60

年銷量

1150

643

424

262

165

86

14.1

12.9

12.1

11.1

10.2

8.9

(參考數(shù)據(jù): ,

(1)根據(jù)散點圖判斷, 哪一對具有的線性相關(guān)性較強(給出判斷即可,不必說明理由)?

(2)根據(jù)(1)的判斷結(jié)果及數(shù)據(jù),建立關(guān)于的回歸方程(方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價為多少元/ 時,年銷售額的預(yù)報值最大?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線 ,曲線 為參數(shù)),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.

(Ⅰ)求曲線, 的極坐標方程;

(Ⅱ)曲線 為參數(shù), , )分別交, 兩點,當取何值時, 取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知: 、 是同一平面上的三個向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標.
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

同步練習冊答案