【題目】設(shè)函數(shù)f(x)=a2lnx+ax(a≠0),g(x)= 2tdt,F(xiàn)(x)=g(x)﹣f(x).
(1)試討論F(x)的單調(diào)性;
(2)當a>0時,﹣e2≤F(x)≤1﹣e在x∈[1,e]恒成立,求實數(shù)a的取值.

【答案】
(1)解:由題意得:g(x)= 2tdt=x2,

∴F(x)=g(x)﹣f(x)=x2﹣a2lnx﹣ax(x>0),

F′(x)=2x﹣ ﹣a= ,

a>0時,x∈(0,a)時,F(xiàn)(x)<0,x∈(a,+∞)時,F(xiàn)(x)>0,

∴函數(shù)F(x)在(0,a)遞減,在區(qū)間(a,+∞)遞增;

a<0時,x∈(0,﹣ )時,F(xiàn)(x)<0,x∈(﹣ ,+∞)時,F(xiàn)(x)>0,

∴函數(shù)F(x)在區(qū)間(0,﹣ )遞減,在(﹣ ,+∞)遞增,

綜上,a>0時,函數(shù)F(x)在區(qū)間(0,a)遞減,在(a,+∞)遞增;

a<0時,函數(shù)F(x)在區(qū)間(0,﹣ )遞減,在區(qū)間(﹣ ,+∞)遞增


(2)解:由題意得F(1)=g(1)﹣f(1)=1﹣a≤1﹣e,即a≥e,

當a>0時,由(1)得F(x)在[1,e]內(nèi)遞減,

故要使﹣e2≤F(x)≤1﹣e在x∈[1,e]恒成立,

只需 ,即 ,

,即a=e


【解析】(1)求出g(x)的解析式,求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的單調(diào)性,得到關(guān)于a的不等式組,解出即可.
【考點精析】掌握定積分的概念和利用導數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道定積分的值是一個常數(shù),可正、可負、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限;一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的五面體中,面ABCD為直角梯形,∠BAD=∠ADC= ,平面ADE⊥平面ABCD,EF=2DC=4AB=4,△ADE是邊長為2的正三角形.
(Ⅰ)證明:BE⊥平面ACF;
(Ⅱ)求二面角A﹣BC﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=2sin(2x+ )的圖象向右平移 個單位,所得圖象對應(yīng)的函數(shù)(
A.在區(qū)間[ , ]上單調(diào)遞增
B.在區(qū)間[ , ]上單調(diào)遞減
C.在區(qū)間[﹣ , ]上單調(diào)遞增
D.在區(qū)間[﹣ , ]上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P(﹣1, )是橢圓E: =1(a>b>0)上一點,F(xiàn)1 , F2分別是橢圓E的左、右焦點,O是坐標原點,PF1⊥x軸.
(1)求橢圓E的方程;
(2)設(shè)A,B是橢圓E上兩個動點,滿足: (0<λ<4,且λ≠2),求直線AB的斜率.
(3)在(2)的條件下,當△PAB面積取得最大值時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義1:若函數(shù)f(x)在區(qū)間D上可導,即f′(x)存在,且導函數(shù)f′(x)在區(qū)間D上也可導,則稱函數(shù)f(x)在區(qū)間D上的存在二階導數(shù),記作f″(x)=[f′(x)]′. 定義2:若函數(shù)f(x)在區(qū)間D上的二階導數(shù)恒為正,即f″(x)>0恒成立,則稱函數(shù)f(x)在區(qū)間D上為凹函數(shù).已知函數(shù)f(x)=x3 x2+1在區(qū)間D上為凹函數(shù),則x的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在研究函數(shù) f ( x )= 的性質(zhì)時,某同學受兩點間距離公式啟發(fā),將f(x)變形為f(x)= ,并給出關(guān)于函數(shù)f(x)以下五個描述:
①函數(shù) f(x)的圖象是中心對稱圖形;
②函數(shù) f(x)的圖象是軸對稱圖形;
③函數(shù) f(x)在[0,6]上是增函數(shù);
④函數(shù) f(x)沒有最大值也沒有最小值;
⑤無論m為何實數(shù),關(guān)于x的方程 f(x)﹣m=0都有實數(shù)根.
其中描述正確的是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD 中,∠ABC=∠BAD=90°,BC=2AD,△PAB與△PAD 都是邊長為2的等邊三角形,E 是BC的中點.
(Ⅰ)證明:平面AE∥平面 PCD;
(Ⅱ)求PAB與平面 PCD 所成二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖長方體ABCD﹣A1B1C1D1的底面邊長為1,側(cè)棱長為2,E、F、G分別為CB1、CD1、AB的中點.
(Ⅰ)求證:FG∥面ADD1A1;
(Ⅱ)求二面角B﹣EF﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市擬定2016年城市建設(shè)A,B,C三項重點工程,該市一大型城建公司準備參加這三個工程的競標,假設(shè)這三個工程競標成功與否相互獨立,該公司對A,B,C三項重點工程競標成功的概率分別為a,b, (a>b),已知三項工程都競標成功的概率為 ,至少有一項工程競標成功的概率為
(1)求a與b的值;
(2)公司準備對該公司參加A,B,C三個項目的競標團隊進行獎勵,A項目競標成功獎勵2萬元,B項目競標成功獎勵4萬元,C項目競標成功獎勵6萬元,求競標團隊獲得獎勵金額的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案