解答下列各題:

(1)求函數(shù)f(x)=tanx·cosx的定義域與值域;

(2)求函數(shù)f(x)=tan|x|的定義域與值域,并作其圖象.

思路分析:先化簡函數(shù),然后確定.

解:(1)

其定義域是{x|x∈R且x≠kπ+,k∈Z}.

由f(x)=·cosx=sinx∈(-1,1),

∴f(x)的值域是(-1,1).

(2)f(x)=k∈Z.

可知,函數(shù)的定義域?yàn)閧x|x∈R且x≠kπ+,k∈Z},值域?yàn)?-∞,+∞),其圖象如圖所示.

溫馨提示

(1)為了畫出函數(shù)圖象,有時(shí)需對給出的函數(shù)式進(jìn)行變形,化簡,在變形,化簡過程中一定要注意等價(jià)變形,否則作出的圖象不是給出函數(shù)的圖象.

(2)由圖象可以看到f(x)=tan|x|不是周期函數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
①對任意的x∈[0,1],總有f(x)≥0; 
②f(1)=1;
③若x1≥0,x2≥0且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立,并且稱f(x)為“友誼函數(shù)”,
請解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.
(3)已知f(x)為“友誼函數(shù)”,且 0≤x1<x2≤1,求證:f(x1)≤f(x2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解答下列各題:
(1)直線l經(jīng)過點(diǎn)(3,2),且傾斜角與直線y=x的傾斜角互補(bǔ),求直線l的方程.
(2)直線l經(jīng)過點(diǎn)(3,2),且與兩坐標(biāo)軸圍成等腰直角三角形,求直線l的方程.
(3)直線l的方程為(2m2-5m-3)x+my-2m-1=0,它在x軸上的截距為
12
,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)閇0,1]的函數(shù)f(x)同時(shí)滿足以下三個(gè)條件:
Ⅰ.對任意的x∈[0,1],總有f(x)≥0;Ⅱ.f(1)=1;Ⅲ.若x1≥0,x2≥0,且x1+x2≤1,則有f(x1+x2)≥f(x1)+f(x2)成立.則稱f(x)為“友誼函數(shù)”,請解答下列各題:
(1)若已知f(x)為“友誼函數(shù)”,求f(0)的值;
(2)函數(shù)g(x)=2x-1在區(qū)間[0,1]上是否為“友誼函數(shù)”?并給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次函數(shù)f(x)=mx+n與指數(shù)型函數(shù)g(x)=ax+b(a>0,a≠1)的圖象交于兩點(diǎn)A(0,1),B(1,2),解答下列各題:
(1)求一次函數(shù)f(x)和指數(shù)型函數(shù)g(x)的表達(dá)式;
(2)作出這兩個(gè)函數(shù)的圖象;
(3)填空:當(dāng)x∈
[0,1]
[0,1]
時(shí),f(x)≥g(x);當(dāng)x∈
(-∞,0)∪(1,+∞)
(-∞,0)∪(1,+∞)
時(shí),f(x)<g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,解答下列各題:
(1)在x軸上求一點(diǎn)P,使它與點(diǎn)P0(4,1,2)的距離為
30
;
(2)在xOy平面內(nèi)的直線x+y=1上確定一點(diǎn)M,使它到點(diǎn)N(6,5,1)的距離最。

查看答案和解析>>

同步練習(xí)冊答案