設(shè)函數(shù)
(I)討論的單調(diào)性;
(II)若有兩個極值點和,記過點的直線的斜率為,問:是否存在,使得若存在,求出的值,若不存在,請說明理由.
(I)(1)當(dāng)時,故在上單調(diào)遞增 ;
(2)當(dāng)時,的兩根都小于,在上,,
故在上單調(diào)遞增;
(3)分別在上單調(diào)遞增,在上單調(diào)遞減.
(II)不存在,使得
解析試題分析:(I)的定義域為 1分
令,其判別式 2分
(1)當(dāng)時,故在上單調(diào)遞增 3分
(2)當(dāng)時,的兩根都小于,在上,,
故在上單調(diào)遞增 4分
(3)當(dāng)時,的兩根為,
當(dāng)時, ;當(dāng)時, ;當(dāng)時, ,故分別在上單調(diào)遞增,在上單調(diào)遞減. 6分
(II)由(I)知,.因為,
所以 7分
又由(I)知,.于是 8分
若存在,使得則.即. 9分
亦即 0分
再由(I)知,函數(shù)在上單調(diào)遞增, 11分
而,所以這與式矛盾.
故不存在,使得 12分
考點:本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,存在性問題探討。
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。通過研究函數(shù)的單調(diào)區(qū)間,得到直線斜率表達(dá)式。存在性問題,往往要假設(shè)存在,利用已知條件探求。本題涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=3-2log2x,g(x)=log2x.
(1)如果x∈[1,4],求函數(shù)h(x)=(f(x)+1)g(x)的值域;
(2)求函數(shù)M(x)=的最大值;
(3)如果不等式f(x2)f()>kg(x)對x∈[2,4]有解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(為常數(shù),是自然對數(shù)的底數(shù))是實數(shù)集上的奇函數(shù).
(1)求的值;
(2)試討論函數(shù)的零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)在如圖給定的直角坐標(biāo)系內(nèi)畫出的圖象;
(2)寫出的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)求函數(shù)在點處的切線方程;
(2)求函數(shù)單調(diào)增區(qū)間;
(3)若存在,使得是自然對數(shù)的底數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
⑴寫出該函數(shù)的單調(diào)區(qū)間;
⑵若函數(shù)恰有3個不同零點,求實數(shù)的取值范圍;
⑶若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com