【題目】已知函數(shù)f(x)=|x1|+|2x6|(xR),記f(x)的最小值為c.

1)求c的值;

2)若實(shí)數(shù)ab滿足a>0,b>0a+b=c,求的最小值.

【答案】12;(21.

【解析】

1)根據(jù)絕對值的幾何意義,將問題理解為數(shù)軸上點(diǎn)到1,33距離的最小值即可求得;

2)根據(jù)(1)中所求結(jié)果,配湊出使用均值不等式的條件,利用均值不等式即可求得.

1f(x)=|x1|+|2x6=|x1|+|x3|+|x3|,

f(x)表示數(shù)軸上的點(diǎn)到數(shù)軸上1,3,3對應(yīng)點(diǎn)的距離之和.

f(x)min=f3)=2,

c=2.

2)∵a+b=2,

[(a+1)+(b+1)]()

[a2+b2](a2+b2+2ab)(a+b)2=1

當(dāng)且僅當(dāng),即時,有最小值1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,ADBC,ABBCCD1AD2,點(diǎn)E、F分別在線段AB、AD上,且EFCD,將△AEF沿EF折起到△MEF的位置,并使平面MEF⊥平面BCDFE,得到幾何體MBCDEF,則折疊后的幾何體的體積的最大值為_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平行四邊形中,,,是線段的中點(diǎn),沿翻折到,使得平面平面.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

(2)已知與直線平行的直線過點(diǎn)且與曲線交于兩點(diǎn)試求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行六面體ABCDA1B1C1D1中,所有棱長均為2,∠AA1D1=∠AA1B1=60°,∠D1A1B1=90°.

1)求證:A1CB1D1;

2)求對角線AC1的長;

3)求二面角C1AB1D1的平面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》是央視首檔全民參與的詩詞節(jié)目,節(jié)目以賞中華詩詞,尋文化基因,品生活之美為宗旨.每一期的比賽包含以下環(huán)節(jié):個人追逐賽、攻擂資格爭奪賽擂主爭霸賽,其中擂主爭霸賽攻擂資格爭奪賽獲勝者與上一場擂主進(jìn)行比拼.“擂主爭霸賽共有九道搶答題,搶到并答對者得一分,答錯則對方得一分,率先獲得五分者即為該場擂主.在《中國詩詞大會》的某一期節(jié)目中,若進(jìn)行擂主爭霸賽的甲乙兩位選手每道搶答題得到一分的概率都是為0.5,則搶答完七道題后甲成為擂主的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若關(guān)于的不等式恒成立,求的取值范圍;

2)當(dāng)時,求證:;

3)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:

是否需要志愿 性別

需要

40

30

不需要

160

270

1)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2)能否有99%的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?

3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人中,需要志愿幫助的老年人的比例?說明理由.

P

0.0

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案