6.如圖,在四棱錐P-ABCD中,PA⊥面ABCD,PA=BC=4,AD=2,AC=AB=3,AD∥BC,N是PC的中點.
(Ⅰ)證明:ND∥面PAB;
(Ⅱ)求三棱錐N-ACD的體積.

分析 (Ⅰ)取PB中點M,連結(jié)AM,MN,推導(dǎo)出四邊形AMND是平行四邊形,從而ND∥AM,由此能證明ND∥面PAB.
(Ⅱ)N到面ABCD的距離等于P到面ABCD的距離的一半,且PA⊥面ABCD,PA=4,從而三棱錐N-ACD的高是2,由此能求出三棱錐N-ACD的體積.

解答 (本小題滿分12分)
證明:(Ⅰ)如圖,取PB中點M,連結(jié)AM,MN.
∵MN是△BCP的中位線,∴$MN\underline{\underline{∥}}\frac{1}{2}BC$.    (2分)
依題意得,$AD\underline{\underline{∥}}\frac{1}{2}BC$,則有$AD\underline{\underline{∥}}MN$(3分)
∴四邊形AMND是平行四邊形,∴ND∥AM(4分)
∵ND?面PAB,AM?面PAB,
∴ND∥面PAB(6分)
解:(Ⅱ)∵N是PC的中點,
∴N到面ABCD的距離等于P到面ABCD的距離的一半,且PA⊥面ABCD,PA=4,
∴三棱錐N-ACD的高是2.(8分)
在等腰△ABC中,AC=AB=3,BC=4,BC邊上的高為$\sqrt{{3^2}-{2^2}}=\sqrt{5}$.(9分)
BC∥AD,∴C到AD的距離為$\sqrt{5}$,
∴${S_{△ADC}}=\frac{1}{2}×2×\sqrt{5}=\sqrt{5}$.(11分)
∴三棱錐N-ACD的體積是$\frac{1}{3}×\sqrt{5}×2=\frac{2}{3}\sqrt{5}$.(12分)

點評 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為60°,$|{\overrightarrow a}$|=2,$|{\overrightarrow b}$|=6,則2$\overrightarrow a+\overrightarrow b$在$\overrightarrow a$方向上的投影為( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x2-alnx在區(qū)間(1,2]內(nèi)是增函數(shù),g(x)=x-a$\sqrt{x}$在區(qū)間(0,1)內(nèi)是減函數(shù).
(1)求f(x)、g(x)的表達式;
(2)求證:當x>0時,方程f(x)-g(x)=x2-2x+3有唯一解.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若雙曲線x2-2y2=K的焦距是6,則K的值是(  )
A.±24B.±6C.24D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知三個點A(0,0),B(2,0),C(4,2),則△ABC的外心的縱坐標是( 。
A.$\frac{3}{2}$B.3C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.方程x-2=($\frac{1}{2}$)x的解的個數(shù)為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.給出下列函數(shù)(1)y=x2+|x|+2,x≤0,(2)y=t2-t+2,t≤0,(3)y=x2-|x|+2,x≥0,$(4)y={(\sqrt{-x})^2}+\sqrt{x^4}$+2,其中與函數(shù)y=x2-x+2,x≤0相等的有( 。
A.(1)B.(1)(2)C.(1)(2)(4)D.(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知x2+y2+z2=1,則x+2y+3z的最小值為-$\sqrt{14}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在一次國際學術(shù)會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會說英語.
乙是法國人,還會說日語.
丙是英國人,還會說法語.
丁是日本人,還會說漢語.
戊是法國人,還會說德語.
則這五位代表的座位順序應(yīng)為( 。
A.甲丙丁戊乙B.甲丁丙乙戊C.甲乙丙丁戊D.甲丙戊乙丁

查看答案和解析>>

同步練習冊答案