某中學(xué)從高中三個(gè)年級(jí)選派4名教師和20名學(xué)生去當(dāng)文明交通宣傳志愿者,20名學(xué)生的名額分配為高一12人,高二6人,高三2人.
(1)若從20名學(xué)生中選出3人做為組長,求他們中恰好有1人是高一年級(jí)學(xué)生的概率;
(2)若將4名教師隨機(jī)安排到三個(gè)年級(jí)(假設(shè)每名教師加入各年級(jí)是等可能的,且各位教師的選擇是相互獨(dú)立的),記安排到高一年級(jí)的教師人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
(1) ;(2)詳見解析.

試題分析:(1)從高一12人中選出1人,從高二和高三共8人中選出2人的事件為A,,計(jì)算得到結(jié)果;(2)每位教師選擇高一年級(jí)的概率均為,并且相互獨(dú)立,X的所有取值為0,1,2,3,4.,,,然后列出隨機(jī)變量X的概率分布列,利用,或是利用二項(xiàng)分布的期望公式,得出結(jié)果.隨機(jī)變量的概率,分布列,期望還是高考的重點(diǎn)內(nèi)容,屬于基礎(chǔ)題型,
試題解析:(1)解:設(shè) “他們中恰好有1人是高一年級(jí)學(xué)生” 為事件

所以恰好有1人是高一年級(jí)學(xué)生的概率為.           4分
(2)解:X的所有取值為0,1,2,3,4.           6分
由題意可知,每位教師選擇高一年級(jí)的概率均為,         7分
所以 ;
;;

隨機(jī)變量X的分布列為:
X
0
1
2
3
4
P





                                                           12分
所以.     13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某公司計(jì)劃在迎春節(jié)聯(lián)歡會(huì)中設(shè)一項(xiàng)抽獎(jiǎng)活動(dòng):在一個(gè)不透明的口袋中裝入外形一樣號(hào)碼分別為1,2,3,…,10的十個(gè)小球;顒(dòng)者一次從中摸出三個(gè)小球,三球號(hào)碼有且僅有兩個(gè)連號(hào)的為三等獎(jiǎng),獎(jiǎng)金30元;三球號(hào)碼都連號(hào)為二等獎(jiǎng),獎(jiǎng)金60元;三球號(hào)碼分別為1,5,10為一等獎(jiǎng),獎(jiǎng)金240元;其余情況無獎(jiǎng)金。
(1)求員工甲抽獎(jiǎng)一次所得獎(jiǎng)金ξ的分布列與期望;
(2)員工乙幸運(yùn)地先后獲得四次抽獎(jiǎng)機(jī)會(huì),他得獎(jiǎng)次數(shù)的方差是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將編號(hào)為1,2,3,4的四個(gè)小球,分別放入編號(hào)為1,2,3,4的四個(gè)盒子,每個(gè)盒子中有且僅有一個(gè)小球.若小球的編號(hào)與盒子的編號(hào)相同,得1分,否則得0分.記為四個(gè)小球得分總和.
(1)求時(shí)的概率;
(2)求的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若n∈N*,且n為奇數(shù),則6n+C
1n
•6n-1+C
2n
•6n-2+…+C
n-1n
•6被8除所得的余數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在一場娛樂晚會(huì)上,有5位民間歌手(1至5號(hào))登臺(tái)演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒有偏愛,因此在1至5號(hào)中隨機(jī)選3名歌手.
(1)求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(2)X表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件A“取出的2件產(chǎn)品都是二等品”的概率P(A)=0.04
(1)求從該批產(chǎn)品中任取1件是二等品的概率;
(2)若該批產(chǎn)品共10件,從中任意抽取2件;X表示取出的2件產(chǎn)品中二等品的件數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知甲盒內(nèi)有大小相同的1個(gè)紅球和3個(gè)黑球,乙盒內(nèi)有大小相同的2個(gè)紅球和4個(gè)黑球,現(xiàn)從甲、乙兩個(gè)盒內(nèi)各任取2個(gè)球.設(shè)ξ為取出的4個(gè)球中紅球的個(gè)數(shù),則P(ξ=2)=   .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

由于某高中建設(shè)了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個(gè)數(shù)ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)隨機(jī)變量X的分布為,則的值為     

查看答案和解析>>

同步練習(xí)冊答案