已知數(shù)列的前項和為,則關(guān)于的命題(其中)。
①若是關(guān)于的二次函數(shù),則是等差數(shù)列;
;
③若是等比數(shù)列,且,則;
④若是等差數(shù)列,且,則;
⑤若是等差數(shù)列,則。其中正確的有( )個。
A.2 B.3C.4 D.5
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)
已知數(shù)列是首項為1的等差數(shù)列,且,若成等比數(shù)列,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列的前n項和為,對任意的正整數(shù)n,都有成立,記),
(1)求數(shù)列的通項公式;
(2)記),設(shè)數(shù)列的前n和為,求證:對任意正整數(shù)n,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知數(shù)列中,,,數(shù)列滿足:。
(1)求 ;(2)求證: ;(3)求數(shù)列的通項公式;
(4)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在等差數(shù)列中,若,則的值為  (    )   
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)是數(shù)列的前項和,若是非零常數(shù),稱數(shù)列為“和等比數(shù)列”。(1)若數(shù)列是首項為2 ,公比為4的等比數(shù)列,則數(shù)列     (填“是”或“不是”) “和等比數(shù)列”; 
(2)若數(shù)列是首項為 ,公差為的等差數(shù)列,且數(shù)列是“和等比數(shù)列”,則之間滿足的關(guān)系為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


已知數(shù)列中, ,則               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)M1(0,0),M2(1,0),以M1為圓心,| M1 M2| 為半徑作圓交x軸于點M3 (不同于M2),記作⊙M1;以M2為圓心,| M2 M3| 為半徑作圓交x軸于點M4 (不同于M3),記作
M2;……;以Mn為圓心,| Mn Mn+1 | 為半徑作圓交x軸于點Mn+2 (不同于Mn+1),記作⊙Mn;……
當(dāng)n∈N*時,過原點作傾斜角為30°的直線與⊙Mn交于An,Bn
考察下列論斷:
當(dāng)n=1時,| A1B1 |=2;
當(dāng)n=2時,| A2B2 |=;
當(dāng)n=3時,| A3B3 |=
當(dāng)n=4時,| A4B4 |=;
……
由以上論斷推測一個一般的結(jié)論:
對于n∈N*,| AnBn |=                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列,,,定義無窮數(shù)列如下:,,,,…,,…
(1)  寫出這個數(shù)列的一個通項公式(不能用分段函數(shù))
(2)  指出32是數(shù)列中的第幾項,并求數(shù)列中數(shù)值等于32的兩項之間(不包括這兩項)的所有項的和
(3)  如果,且), 求函數(shù)的解析式,并計算(用表示)

查看答案和解析>>

同步練習(xí)冊答案