如右圖所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M為AA1的中點(diǎn),P是BC上一點(diǎn),且由P沿棱柱側(cè)面經(jīng)過棱CC1到M的最短路線長為,設(shè)這條最短路線與CC1的交點(diǎn)為N.求:
(1)該三棱柱的側(cè)面展開圖的對角線長;
(2)PC和NC的長.
(1)其對角線長為
.
(2) PC=P1C=2,
NC=.
(1)正三棱柱ABC—A1B1C1的側(cè)面展開圖是一個長為9,寬為4的矩形,其對角線長為
.
(2)如右圖所示,將側(cè)面BB1C1C繞棱CC1旋轉(zhuǎn)120°使其與側(cè)面AA1C1C在同一平面上,點(diǎn)P運(yùn)動到點(diǎn)P1的位置,連結(jié)MP1,則MP1就是由點(diǎn)P沿棱柱側(cè)面經(jīng)過棱CC1到點(diǎn)M的最短路線.
設(shè)PC=x,則P1C=x.
在Rt△MAP1中,
由勾股定理得(3+x)2+22=29,
求得x=2.∴PC=P1C=2,
∵,∴NC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:044
如右圖所示,在正三棱柱ABC-A1B1C1,各棱長都等于a,D、F分別為AC1和BB1的中點(diǎn).
(1)求證:DF為異面直線AC1和BB1的公垂線段,并求其長度;
(2)求點(diǎn)C1到平面AFC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
(1)求證:DF為異面直線AC1和BB1的公垂線段,并求其長度;
(2)求點(diǎn)C1到平面AFC的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com