13.已知函數(shù)f(x)=2|x+2|-|x+1|,無窮數(shù)列{an}的首項a1=a.
(1)如果an=f(n)(n∈N*),寫出數(shù)列{an}的通項公式;
(2)如果an=f(an-1)(n∈N*且n≥2),要使得數(shù)列{an}是等差數(shù)列,求首項a的取值范圍;
(3)如果an=f(an-1)(n∈N*且n≥2),求出數(shù)列{an}的前n項和Sn

分析 (1)化簡函數(shù)f(x)為分段函數(shù),然后求出an=f(n)=n+3.
(2)如果{an}是等差數(shù)列,求出公差d,首項,然后求解a的范圍.
(3)當(dāng)a≥-1時,求出前n項和,當(dāng)-2≤a≤-1時,當(dāng)a≤-2時,分別求出n項和即可.

解答 (18分)解:(1)∵函數(shù)f(x)=2|x+2|-|x+1|=$\left\{\begin{array}{l}{x+3,x≥-1}\\{3x+5,-2<x≤-1}\\{-x-3,x≤-2}\end{array}\right.$,…(2分)
又n≥1且n∈N*,∴an=f(n)=n+3.…(4分)
(2)如果{an}是等差數(shù)列,則an-an-1=d,an=an-1+d,
由f(x)知一定有an=an-1+3,公差d=3.
當(dāng)a1≥-1時,符合題意.
當(dāng)-2≤a1≤-1時,a2=3a1+5,由a2-a1=3得3a1+5-a1=3,得a1=-1,a2=2.
當(dāng)a1≤-2時,a2=-a1-3,由a2-a1=3得-a1-3-a1=3,得a1=-3,此時a2=0.
綜上所述,可得a的取值范圍是a≥-1或a=-3.…(9分)
(3)當(dāng)a≥-1時,an=f(an-1)=an-1+3,∴數(shù)列{an}是以a為首項,公差為3的等差數(shù)列,${S_n}=na+\frac{n(n-1)}{2}×3=\frac{3}{2}{n^2}+(a-\frac{3}{2})n$.…(12分)
當(dāng)-2≤a≤-1時,a2=3a1+5=3a+5≥-1,∴n≥3時,an=an-1+3.∴n=1時,S1=a.n≥2時,${S_n}=a+(n-1){a_2}+\frac{(n-1)(n-2)}{2}×3=\frac{3}{2}{n^2}+(\frac{1}{2}+3a)n-2a-2$
又S1=a也滿足上式,∴${S_n}=\frac{3}{2}{n^2}+(\frac{1}{2}+3a)n-2a-2$(n∈N*)…(15分)
當(dāng)a≤-2時,a2=-a1-3=-a-3≥-1,∴n≥3時,an=an-1+3.∴n=1時,S1=a.n≥2時,${S_n}=a+(n-1){a_2}+\frac{(n-1)(n-2)}{2}×3=\frac{3}{2}{n^2}-(a+\frac{15}{2})n+2a+6$
又S1=a也滿足上式,∴${S_n}=\frac{3}{2}{n^2}-(a+\frac{15}{2})n+2a+6$(n∈N*).
綜上所述:Sn=$\left\{\begin{array}{l}{\frac{3}{2}{n}^{2}+(a-\frac{3}{2})n,a≥-1}\\{\frac{3}{2}{n}^{2}+(\frac{1}{2}+3a)n-2a-2,-2<a≤-1}\\{\frac{3}{2}{n}^{2}-(a+\frac{15}{2})n+2a+6,a≤-2}\end{array}\right.$.…(18分).

點(diǎn)評 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列求和,考查轉(zhuǎn)化思想以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l的斜率$k∈({-1,\sqrt{3}}]$,則直線傾斜角的范圍為( 。
A.$[{0,\frac{π}{3}}]∪[{\frac{π}{2},\frac{3π}{4}}]$B.$[{0,\frac{π}{3}}]∪(\frac{3π}{4},π)$C.$[{\frac{π}{3},\frac{π}{2}}]∪(\frac{3π}{4},π]$D.$[{0,\frac{π}{3}}]∪(\frac{π}{2},\frac{3π}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.拋物線y=x2上一點(diǎn)M到焦點(diǎn)的距離為1,則點(diǎn)M的縱坐標(biāo)為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.一個底面半徑為2的圓柱被與其底面所成角是60°的平面所截,截面是一個橢圓,則該橢圓的焦距等于$4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.定義f(x)={x}(其中{x}表示不小于x的最小整數(shù))為“取上整函數(shù)”,例如{2.1}=3,{4}=4.以下關(guān)于“取上整函數(shù)”性質(zhì)的描述,正確的是(  )
①f(2x)=2f(x);                         
②若f(x1)=f(x2),則x1-x2<1;
③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);
④$f(x)+f(x+\frac{1}{2})=f(2x)$.
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.根據(jù)相關(guān)規(guī)定,機(jī)動車駕駛?cè)搜褐械木凭看笥冢ǖ扔冢?0毫克/100毫升的行為屬于飲酒駕車.假設(shè)飲酒后,血液中的酒精含量為p0毫克/100毫升,經(jīng)過x個小時,酒精含量降為p毫克/100毫升,且滿足關(guān)系式$p={p_0}•{e^{rx}}$(r為常數(shù)).若某人飲酒后血液中的酒精含量為89毫克/100毫升,2小時后,測得其血液中酒精含量降為61毫克/100毫升,則此人飲酒后需經(jīng)過8小時方可駕車.(精確到小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知y=g(x)與y=h(x)都是定義在(-∞,0)∪(0,+∞)上的奇函數(shù),且當(dāng)x>0時,$g(x)=\left\{\begin{array}{l}{x^2},\;\;0<x≤1\\ g(x-1),\;\;\;x>1.\end{array}\right.$,h(x)=klog2x(x>0),若y=g(x)-h(x)恰有4個零點(diǎn),則正實數(shù)k的取值范圍是(  )
A.$[\frac{1}{2},1]$B.$(\frac{1}{2},1]$C.$(\frac{1}{2},{log_3}2]$D.$[\frac{1}{2},{log_3}2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,F(xiàn)1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),且焦距為2$\sqrt{2}$,動弦AB平行于x軸,且|F1A|+|F1B|=4.
(1)求橢圓C的方程;
(2)若點(diǎn)P是橢圓C上異于點(diǎn)$a>\sqrt{5}$、A,B的任意一點(diǎn),且直線PA、PB分別與y軸交于點(diǎn)M、N,若MF2、NF2的斜率分別為k1、k2,求證:k1•k2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若$sin(\frac{π}{6}-α)=\frac{1}{3}$,則${cos^2}(\frac{π}{6}+\frac{α}{2})$=(  )
A.$\frac{7}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$-\frac{7}{9}$

查看答案和解析>>

同步練習(xí)冊答案