(本小題滿分12分)
已知橢圓左、右焦點分別為F1、F2,點,點F2在線段PF1的中垂線上。
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于M、N兩點,直線F2M與F2N的傾斜角互補,求證:直線過定點,并求該定點的坐標(biāo)。
(1)(2)由
由已知直線F2M與F2N的傾斜角互補,
整理得直線MN過定點,該定點的坐標(biāo)為(2,0)

試題分析:(1)由橢圓C的離心率
,其中
橢圓C的左、右焦點分別為
又點F2在線段PF1的中垂線上

解得
  
(2)由題意,知直線MN存在斜率,其方程為

消去
設(shè)

  
由已知直線F2M與F2N的傾斜角互補,

化簡,得    

整理得
 直線MN的方程為,  
因此直線MN過定點,該定點的坐標(biāo)為(2,0)  
點評:直線與橢圓相交問題常用的思路:直線方程與橢圓方程聯(lián)立,整理為x的二次方程,利用根與系數(shù)的關(guān)系,將所求問題轉(zhuǎn)化到兩根來表示
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若方程C:是常數(shù))則下列結(jié)論正確的是(  )
A.,方程C表示橢圓B.,方程C表示雙曲線
C.,方程C表示橢圓D.,方程C表示拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以雙曲線:的右焦點為圓心,并與其漸近線相切的圓的標(biāo)準(zhǔn)方程是______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點為橢圓的右頂點, 點,點在橢圓上, .


(1)求直線的方程;
(2)求直線被過三點的圓截得的弦長;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線y2=2x的焦點是F,點P是拋物線上的動點,又有點A(3,2).
則|PA|+|PF|的最小值是       ,取最小值時P點的坐標(biāo)           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點不是左、右頂點),且以為直徑的圓經(jīng)過橢圓C的右頂點A.   求證:直線過定點,并求出定點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上一點到焦點的距離為3,則點的橫坐標(biāo)是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線=1的焦點到漸近線的距離為(   )。
A.2B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的焦點為F,過拋物線在第一象限部分上一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交于M,若,則點P的坐標(biāo)為         。

查看答案和解析>>

同步練習(xí)冊答案