已知F1、F2為雙曲線C:x2-y2=1的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則|PF1|·|PF2|=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知雙曲線x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則的最小值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的直線l交拋物線于點(diǎn)A、B,交其準(zhǔn)線于點(diǎn)C.若|BC|=2|BF|,且|AF|=3,則此拋物線的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.
(1) 若∠F1AB=90°,求橢圓的離心率;
(2) 若,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動點(diǎn)M(2,t)(t>0)在直線x= (a為長半軸,c為半焦距)上.
(1) 求橢圓的標(biāo)準(zhǔn)方程;
(2) 求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3) 設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓=1(a>b>0)的離心率為,且過點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個動點(diǎn),過Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1) 求橢圓方程;
(2) 若圓N與x軸相切,求圓N的方程;
(3) 設(shè)點(diǎn)R為圓N上的動點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f0(x)=1-x2,f1(x)=,fn(x)=,(n≥1,n≥N),則方程f1(x)=有________個實(shí)數(shù)根,方程fn(x)=有________個實(shí)數(shù)根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com