8.方程x2+(m+3)x-m=0有兩個正實(shí)根,則m的取值范圍是(-∞,-9].

分析 根據(jù)一元二次方程方程根的符號,利用根與系數(shù)之間的關(guān)系即可得到結(jié)論.

解答 解:設(shè)方程的兩個正根分別為x1,x2,
則由根與系數(shù)之間的關(guān)系可得$\left\{\begin{array}{l}{(m+3)^{2}+4m≥0}\\{-m-3>0}\\{-m>0}\end{array}\right.$,
解得m≤-9,
故m的取值范圍為:[-∞,-9];
故答案為:(-∞,-9].

點(diǎn)評 本題主要考查一元二次方程根的根的應(yīng)用,根據(jù)根與系數(shù)之間的關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在如圖所示的圓臺中,AC是下底面圓O的直徑,EF是上底面圓O′直徑,F(xiàn)B是圓臺的一條母線.
(1)已知G,H分別為EC,F(xiàn)B的中點(diǎn),求證:GH∥面ABC;
(2)已知$EF=FB=\frac{1}{2}AC=2$,AB=BC,求二面角F-BC-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè) Sn是數(shù)列 {an}的前 n 項(xiàng)和,且a1=-1,an+1=SnSn+1(n∈N*).
(1)求證數(shù)列{$\frac{1}{{S}_{n}}$}為等差數(shù)列,并求Sn;
(2)求數(shù)列$\left\{{\frac{1}{{{a_{n+1}}}}}\right\}$的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若點(diǎn)P(3,-4,5)在平面xoy內(nèi)的射影為M,則OM的長為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=25,則S9=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,向量$\overrightarrow a=({{S_n},1})$,$\overrightarrow b=({{2^n}-1,\frac{1}{2}})$,滿足條件$\overrightarrow a∥\overrightarrow b$,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足b1=1,bn+1-bn=1,cn=$\frac{b_n}{a_n}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)M={x|x=a2+1,a∈R},P={y|y=b2-4b+5,b∈R},則下列關(guān)系正確的是( 。
A.M=PB.M?P
C.P?MD.M與P沒有公共元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,∠BAD=∠ADC=$\frac{π}{2}$,AB=AD=AP=3,DC=2,點(diǎn)M在PB上,且PM=2MB.
(1)證明:CM∥平面PAD;
(2)求二面角M-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,若A=120°,a=2,b=$\frac{2\sqrt{3}}{3}$,則B=30° .

查看答案和解析>>

同步練習(xí)冊答案