(1)求橢圓25x2+16y2=400的長軸和短軸的長、離心率、焦點坐標(biāo)和頂點坐標(biāo).
(2)現(xiàn)有6道題,其中4道甲類題,2道乙類題,張樂同學(xué)從中任取2道題解答.試求:所取的2道題都是甲類題的概率.
考點:古典概型及其概率計算公式,橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程,概率與統(tǒng)計
分析:(1)將橢圓25x2+16y2=400的方程化為標(biāo)準(zhǔn)方程,進而求出a,b,c后,可得長軸和短軸的長、離心率、焦點坐標(biāo)和頂點坐標(biāo).
(2)先計算出從6個題中任取2道題的基本事件總數(shù)和2道題都是甲類題的基本事件個數(shù),代入古典概型概率計算公式,可得答案.
解答: 解:(1)橢圓方程化簡為
x2
16
+
y2
25
=1

則a2=25,b2=16,c2=a2-b2=9…(1分)
長軸長:2a=10,短軸長:2b=8…(3分)
離心率:e=
c
a
=
3
5
…(4分)
焦點坐標(biāo)為(0,±3)
頂點坐標(biāo)為(0,±5),(±4,0)…(6分)
(2)將4道甲類題依次編號為1,2,3,4;2道乙類題依次編號為5,6.任取2道題,
基本事件為:
{1,2},{1,3},{1,4},{1,5},{1,6},
{2,3},{2,4},{2,5},{2,6},{3,4},
{3,5},{3,6},{4,5},{4,6},{5,6},共15個,
而且這些基本事件的出現(xiàn)是等可能的.
用A表示“都是甲類題”這一事件,
則A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6個,
所以P(A)=
6
15
=
2
5
…(6分)
點評:本題考查的知識點是古典概型概率計算公式,橢圓的基本性質(zhì),其中熟練掌握利用古典概型概率計算公式求概率的步驟及橢圓的基本性質(zhì),是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個社會調(diào)查機構(gòu)為了解某社區(qū)居民的月收入情況,從該社區(qū)成人居民中抽取10000人進行調(diào)查,根據(jù)所得信息制作了如圖所示的樣本頻率分布直方圖.

(Ⅰ)為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣方法抽出100人作進一步調(diào)查,試求其中月收入在[2000,2500)(2000元至2500元之間)的人數(shù);
(Ⅱ)為了估計從該社區(qū)任意抽取的3個居民中恰有2人月收入在[2000,3000)的概率P,特設(shè)計如下隨機模擬的方法:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機數(shù),依次用0,1,2,3,…9的前若干個數(shù)字表示月收入在[2000,3000)的居民,剩余的數(shù)字表示月收入不在[2000,3000)的居民;再以每三個隨機數(shù)為一組,代表收入的情況.假設(shè)用上述隨機模擬方法已產(chǎn)生了表中的20組隨機數(shù),請根據(jù)這批隨機數(shù)估計概率P的值.
907  966   191   925   271   932   812   458  569  683
431   257   393   027   556   488  730   113   537   989
(Ⅲ)任意抽取該社區(qū)的5位居民,用ξ表示月收入在[2000,3000)(元)的人數(shù),求ξ的數(shù)學(xué)期望與方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足,a1=1,an>0且an+12=
an2
4an2+1
(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{bn}的前n項和Sn滿足:b1=1,
Sn+1
an2
=
Sn
an+12
+16n2-8n-3,求數(shù)列{2nbn}的前n項和An
(3)記Tn=a12+a22+…+an2,若T2n+1-Tn
m
30
對任意n∈N*恒成立,求正整數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)遞增等差數(shù)列{an}的前n項和為Sn,已知a3=1,a4是a3和a7的等比中項.
(l)求數(shù)列{an}的通項公式;
(2)若bn=
1
an2+24n-25
,求數(shù)列{bn}的前100項和T100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),滿足向量
A1An+1
與向量
BnCn
共線,且點Bn(n,bn)(n∈N*)都在斜率為6的同一條直線上.
(1)試用a1,b1與n來表示an
(2)設(shè)a1=a,b1=-a,且12<a≤15,求數(shù){an}中的最小值的項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是平行四邊形,∠BAD=60°,平面PAB⊥平面ABCD,PA=PB=AB=
1
2
AD,E,F(xiàn)分別為AD,PC的中點.
(Ⅰ)求證:BD⊥平面PAB
(Ⅱ)求證:EF⊥平面PBD
(Ⅲ)若AB=2,求直線AD與平面PBD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=lg(m2-8m+15)+(m2-9m+18)i在復(fù)平面內(nèi)表示的點為A,實數(shù)m取什么值時,
(1)z為實數(shù)?
(2)z為純虛數(shù)?
(3)A位于第二象限?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù).乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示.
(1)求甲組同學(xué)植樹棵數(shù)的平均數(shù)和方差;
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,則第n幅圖的圓點個數(shù)為
 
.(用含有n的式子表示)

查看答案和解析>>

同步練習(xí)冊答案