【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機的對入院50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯(lián)表補充完整,并判斷是否有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān)?說明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進(jìn)行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學(xué)期望及方差,下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中.

【答案】(1)答案見解析;(2)答案見解析.

【解析】試題分析:

(1)結(jié)合題中所給的數(shù)據(jù)完成列聯(lián)表,結(jié)合列聯(lián)表計算可得.故有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān).

(2)由題意可知離散型隨機變量的所有可能取值為:結(jié)合超幾何分布概率公式計算可得隨機變量的分布列,然后結(jié)合分布列可得.

試題解析:

1)由于在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為,所以50人中患心肺疾病的人數(shù)為30人,故可將列聯(lián)表補充如下:

患心肺疾病

不患心肺疾病

合計

20

5

25

10

15

25

合計

30

20

50

.

故有99.5%的把握認(rèn)為患心肺疾病與性別有關(guān).

2)離散型隨機變量的所有可能取值為:

,,

.

所以的分布列如下:

.

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 若Sn=2an﹣3n.
(Ⅰ)求證:數(shù)列{an+3}是等比數(shù)列,并求出數(shù)列{an}的通項an;
(Ⅱ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣alnx(a∈R)
(1)當(dāng)a=2時,求曲線y=f(x)在點A(1,f(1))處的切線方程;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(cosα,sinα), =(cosβ,sinβ),(0<β<α<π).
(1)若 ,求證:
(2)設(shè) ,若 ,求α,β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

1)當(dāng)時,求不等式的解集;

(2)若不等式的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項a1= ,an+1= ,n=1,2,3,…. (Ⅰ)證明:數(shù)列{ ﹣1}是等比數(shù)列;
(Ⅱ)求數(shù)列 { }的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 有一個零點為4,且滿足.

(1)求實數(shù)的值;

(2)試問:是否存在這樣的定值,使得當(dāng)變化時,曲線在點處的切線互相平行?若存在,求出的值;若不存在,請說明理由;

(3)討論函數(shù)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定橢圓C: =1(a>b>0).設(shè)t>0,過點T(0,t)斜率為k的 直線l與橢圓C交于M,N兩點,O為坐標(biāo)原點.
(Ⅰ)用a,b,k,t表示△OMN的面積S,并說明k,t應(yīng)滿足的條件;
(Ⅱ)當(dāng)k變化時,求S的最大值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人約定在下午 4:30:5:00 間在某地相見,且他們在 4:30:5:00 之間 到達(dá)的時刻是等可能的,約好當(dāng)其中一人先到后一定要等另一人 20 分鐘,若另一人仍不到則可以離去,則這兩人能相見的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案