2.角α的終邊在第一象限,則$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$的取值集合為( 。
A.{-2,2}B.{0,2}C.{2}D.{0,-2,2}

分析 判斷角所在的象限,然后去掉絕對值求解即可.

解答 解:角α的終邊在第一象限,則$\frac{α}{2}$∈(k$π,kπ+\frac{π}{4}$),k∈Z,
$\frac{α}{2}$在第一象限時,$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$=2,
當(dāng)$\frac{α}{2}$在第三象限時,則$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$=-2.
則$\frac{sin\frac{α}{2}}{|sin\frac{α}{2}|}$+$\frac{cos\frac{α}{2}}{|cos\frac{α}{2}|}$的取值集合為:{2,-2}.
故選:A.

點評 本題考查三角函數(shù)化簡求值,注意交所在象限,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a=log36,a=log510,a=log714,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖,設(shè)線段DA和平面ABC所成角為α(0<α<$\frac{π}{2}}$),二面角D-AB-C的平面角為β,則( 。
A.α≤β<πB.α≤β≤π-αC.$\frac{π}{2}-α≤β<π$D.$\frac{π}{2}-α≤β≤π-α$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知a≥0且{y|y=2|x|,-2≤x≤a}=[m,n],記g(a)=n-m,則g(a)=$g(a)=\left\{\begin{array}{l}3,0≤a≤2\\{2^a}-1,a>2\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)=x2+x+a在區(qū)間(0,1)上有零點,則實數(shù)a的取值范圍為(  )
A.$(-∞,\frac{1}{4}]$B.$(-∞,\frac{1}{4})$C.(-2,0)D.[-2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,若a=$\sqrt{3}$,A=$\frac{π}{3}$,則b+c的最大值為( 。
A.4B.3$\sqrt{3}$C.2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.△ABC中,角A,B,C的對邊分別為a,b,c,A=$\frac{3π}{4}$,sinB=$\frac{\sqrt{10}}{10}$,D為BC邊中點,AD=1.
(Ⅰ)求$\frac{c}$的值;
(Ⅱ)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將直線l1:x-y-3=0,繞它上面一定點(3,0)沿逆時針方向旋轉(zhuǎn)15°得直線l2,則l2的方程為$\sqrt{3}$x-y-3$\sqrt{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)f(x)的圖象在區(qū)間[a,b]上不間斷,且f(a)f(b)<0,用二分法求相應(yīng)方程的根時,若f(a)<0,f(b)>0,f($\frac{a+b}{2}$)>0,則取有根的區(qū)間為$(a,\frac{a+b}{2})$.

查看答案和解析>>

同步練習(xí)冊答案