某中學(xué)高一學(xué)生在數(shù)學(xué)研究性學(xué)習(xí)中,選擇了“測量一個底部不可到達的建筑物的高度”的課題.設(shè)選擇建筑物的頂點為A,假設(shè)A點離地面的高為AB.已知B,C,D三點依次在地面同一直線上,DC=a,從C,D兩點測得A點的仰角分別為α,β(α>β),則A點離地面的高AB等于(  )
A、
asinαsinβ
sin(α-β)
B、
asinαsinβ
cos(α-β)
C、
acosαcosβ
sin(α-β)
D、
acosαcosβ
cos(α-β)
考點:解三角形的實際應(yīng)用
專題:解三角形
分析:先根據(jù)題意分別表示出BD,BD,進而利用CD=BD-BC建立方程求得AB.
解答: 解:依題意畫圖
在Rt△ABC中,BC=
AB
tanα
,
在Rt△ABD中,BD=
AB
tanβ
,
∴CD=BD-BC=
AB
tanα
-
AB
tanβ
=AB(
cosα
sinα
-
cosβ
sinβ
)=
sin(α-β)•AB
sinαsinβ
=a,
∴AB=
asinαsinβ
sin(α-β)

故選:A.
點評:本題主要考查了解三角形的實際應(yīng)用.解題的關(guān)鍵是根據(jù)題意建立方程求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中定義一種運算“*”,對任意給定的a,b∈R,a*b為唯一確定的實數(shù)且具有性質(zhì):
①對任意a,b∈R,a*b=b*a
②對任意a∈R,a*0=a
③對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c
關(guān)于函數(shù)f(x)=ex*e-x的性質(zhì),有如下說法:
(1)函數(shù)f(x)的最小值為3
(2)函數(shù)f(x)為偶函數(shù)
(3)函數(shù)f′(x)在(-∞,+∞)上是增函數(shù)
其中正確說法的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=ln(3x-2)上過點(1,0)的切線方程(  )
A、y=x-1
B、y=3x-3
C、y=-x-1
D、y=3x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin75°•cos75°+sin15°•sin105°=( 。
A、0
B、
1
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z=-
1+i
2
,則1+z50+z100的值為( 。
A、iB、1C、2+iD、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項和,(n+1)Sn<nSn+1(n∈N*),若
a8
a7
<-1,則( 。
A、Sn的最大值為S8
B、Sn的最小值為S8
C、Sn的最大值為S7
D、Sn的最小值為S7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x+y≥1
-x+y≥1
2x-y≤2
,
(1)求目標函數(shù)z=
1
2
x-y+
1
2
的最值.
(2)若目標函數(shù)z=ax+2y僅在點(1,0)處取得最小值,求a的取值范圍.
(3)求點P(x,y)到直線y=-x-2的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查胃病是否與生活規(guī)律有關(guān),在某地對540名40歲以上的人進行了調(diào)查,結(jié)果是:患胃病者生活不規(guī)律的共60人,患胃病者生活規(guī)律的共20人,未患胃病者生活不規(guī)律的共260人,未患胃病者生活規(guī)律的共200人,根據(jù)以上數(shù)據(jù)列出2×2列聯(lián)表,并判斷40歲以上的人患胃病與否和生活規(guī)律是否有關(guān).
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
參考數(shù)據(jù):P(K2≥6.635)=0.010,P(K2≥7.879)=0.005.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=10,B=60°,C=45°,求邊c.

查看答案和解析>>

同步練習(xí)冊答案