6.記函數(shù)f(x)=$\sqrt{6+x-{x}^{2}}$定義域?yàn)镈.在區(qū)間[-4,5]上隨機(jī)取一個(gè)數(shù)x,則x∈D的概率是$\frac{5}{9}$.

分析 求出函數(shù)的定義域,結(jié)合幾何概型的概率公式進(jìn)行計(jì)算即可.

解答 解:由6+x-x2≥0得x2-x-6≤0,得-2≤x≤3,
則D=[-2,3],
則在區(qū)間[-4,5]上隨機(jī)取一個(gè)數(shù)x,則x∈D的概率P=$\frac{3-(-2)}{5-(-4)}$=$\frac{5}{9}$,
故答案為:$\frac{5}{9}$

點(diǎn)評(píng) 本題主要考查幾何概型的概率公式的計(jì)算,結(jié)合函數(shù)的定義域求出D,以及利用幾何概型的概率公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=(4-x)ex-2,試判斷是否存在m使得y=f(x)與直線3x-2y+m=0(m為確定的常數(shù))相切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)A,B為曲線C:y=$\frac{{x}^{2}}{4}$上兩點(diǎn),A與B的橫坐標(biāo)之和為4.
(1)求直線AB的斜率;
(2)設(shè)M為曲線C上一點(diǎn),C在M處的切線與直線AB平行,且AM⊥BM,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在直角坐標(biāo)系xOy中,直線l1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+t}\\{y=kt}\end{array}\right.$,(t為參數(shù)),直線l2的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+m}\\{y=\frac{m}{k}}\end{array}\right.$,(m為參數(shù)).設(shè)l1與l2的交點(diǎn)為P,當(dāng)k變化時(shí),P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,設(shè)l3:ρ(cosθ+sinθ)-$\sqrt{2}$=0,M為l3與C的交點(diǎn),求M的極徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,估計(jì)A的概率;
(2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg箱產(chǎn)量≥50kg
舊養(yǎng)殖法
新養(yǎng)殖法
(3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P(K2≥K)0.0500.0100.001
K3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E、F(E與A、D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=$\sqrt{3}$,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知x≥0,y≥0,且x+y=1,則x2+y2的取值范圍是[$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.甲、乙、丙、丁四位同學(xué)一起去問(wèn)老師詢問(wèn)成語(yǔ)競(jìng)賽的成績(jī).老師說(shuō):你們四人中有2位優(yōu)秀,2位良好,我現(xiàn)在給甲看乙、丙的成績(jī),給乙看丙的成績(jī),給丁看甲的成績(jī).看后甲對(duì)大家說(shuō):我還是不知道我的成績(jī).根據(jù)以上信息,則( 。
A.乙可以知道四人的成績(jī)B.丁可以知道四人的成績(jī)
C.乙、丁可以知道對(duì)方的成績(jī)D.乙、丁可以知道自己的成績(jī)

查看答案和解析>>

同步練習(xí)冊(cè)答案