【題目】從某校參加高二年級(jí)學(xué)業(yè)水平考試模擬考試的學(xué)生中抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)分成6段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]后,畫(huà)出如圖的頻率分布直方圖.根據(jù)圖形信息,解答下列問(wèn)題:
(1)估計(jì)這次考試成績(jī)的眾數(shù),中位數(shù),平均數(shù);
(2)估計(jì)這次考試成績(jī)的及格率(60分及其以上為及格).
【答案】(1)見(jiàn)解析;(2)0.85.
【解析】試題分析:(1)平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個(gè)小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和;在直方圖中,高度最高的小矩形的中間值的橫坐標(biāo)即為眾數(shù);中位數(shù)是這個(gè)數(shù)兩側(cè)的小矩形的面積分別為0.5.(2)由頻率分布直方圖,求出不及格率,即可求得這次考試成績(jī)的及格率;
解析:
(1)由眾數(shù)概念知,眾數(shù)是出現(xiàn)次數(shù)最多的,
在直方圖中,高度最高的小矩形的中間值的橫坐標(biāo)即為眾數(shù),
由頻率分布直方圖知,這次測(cè)試數(shù)學(xué)成績(jī)的眾數(shù)為85
這次考試成績(jī)的中位數(shù)為則有:
這次考試成績(jī)的平均數(shù)為:
45×(0.005×10)+55×(0.01×10)+65×(0.025×10)+75×(0.025×10)+85×(0.03×10)+95×(0.005×10)=73;
(2)這次考試成績(jī)的及格率1﹣(0.005×10﹣0.01×10)=0.85
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的首項(xiàng)為,前項(xiàng)和為與之間滿足 ,
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)設(shè)存在正整數(shù),使對(duì)一切都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若對(duì),都有成立,求的取值范圍;
(3)當(dāng)時(shí),求在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)擬建造如圖所示的容器(不計(jì)厚度,長(zhǎng)度單位:米),其中容器的中間為圓柱形,左右兩端均為半球形,按照設(shè)計(jì)要求容器的容積為立方米,且l≥2r.假設(shè)該容器的建造費(fèi)用僅與其表面積有關(guān),已知圓柱形部分每平方米建造費(fèi)用為3千元,半球形部分每平方米建造費(fèi)用為c(c>3)千元.設(shè)該容器的建造費(fèi)用為y千元.
①寫(xiě)出y關(guān)于r的函數(shù)表達(dá)式,并求該函數(shù)的定義域;
②求該容器的建造費(fèi)用最小時(shí)的r.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】桑基魚(yú)塘是某地一種獨(dú)具地方特色的農(nóng)業(yè)生產(chǎn)形式,某研究單位打算開(kāi)發(fā)一個(gè)桑基魚(yú)塘項(xiàng)目,該項(xiàng)目準(zhǔn)備購(gòu)置一塊平方米的矩形地塊,中間挖成三個(gè)矩形池塘養(yǎng)魚(yú),挖出的泥土堆在池塘四周形成基圍(陰影部分所示)種植桑樹(shù),池塘周?chē)幕鶉鷮捑鶠?/span>米,如圖,設(shè)池塘所占總面積為平方米.
(Ⅰ)試用表示.
(Ⅱ)當(dāng)取何值時(shí),才能使得最大?并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)棱底面, 為棱中點(diǎn). , , .
(I)求證: 平面.
(II)求證: 平面.
(III)在棱的上是否存在點(diǎn),使得平面平面?如果存在,求此時(shí)的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), ,若曲線和曲線在處的切線都垂直于直線.
(Ⅰ)求, 的值.
(Ⅱ)若時(shí), ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與拋物線有相同的焦點(diǎn)為原點(diǎn),點(diǎn)是準(zhǔn)線上一動(dòng)點(diǎn),點(diǎn)在拋物線上,且,則的最小值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一名學(xué)生騎自行車(chē)上學(xué),從他家到學(xué)校的途中有個(gè)交通崗,假設(shè)他在各個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,并且概率都是.求:
()這名學(xué)生在途中遇到次紅燈次數(shù)的概率.
()這名學(xué)生在首次停車(chē)前經(jīng)過(guò)了個(gè)路口的概率.
()這名學(xué)生至少遇到一次紅燈的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com