2.若f(x)=x2+ax+b(a,b∈R),x∈[-1,1],且|f(x)|的最大值為$\frac{1}{2}$,則4a+3b=-$\frac{3}{2}$.

分析 根據(jù)x的范圍以及函數(shù)的最大值得到關(guān)于a,b的不等式組,求出a,b的值即可.

解答 解:若|f(x)|的最大值為$\frac{1}{2}$,
|f(0)|=|b|≤$\frac{1}{2}$,-$\frac{1}{2}$≤b≤$\frac{1}{2}$①,
同理-$\frac{1}{2}$≤1+a+b≤$\frac{1}{2}$②,
-$\frac{1}{2}$≤1-a+b≤$\frac{1}{2}$③,
②+③得:-$\frac{3}{2}$≤b≤-$\frac{1}{2}$④,
由①、④得:b=-$\frac{1}{2}$,
當b=-$\frac{1}{2}$時,分別代入②、③得:$\left\{\begin{array}{l}{-1≤a≤0}\\{0≤a≤1}\end{array}\right.$⇒a=0,
故4a+3b=-$\frac{3}{2}$,
故答案為:-$\frac{3}{2}$.

點評 本題考查了二次函數(shù)的性質(zhì),考查不等式問題,是一道中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知正項數(shù)列{an}的前n項和為Sn,且$\sqrt{{S}_{n}}$是1與an的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)Tn為數(shù)列{$\frac{2}{{a}_{n}{a}_{n+1}}$}的前n項和,證明:$\frac{2}{3}$<Tn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某知名品牌汽車深受消費者喜愛,但價格昂貴.某汽車經(jīng)銷商推出A,B,C三種分期付款方式銷售該品牌汽車,并對近期100位采用上述分期付款的客戶進行統(tǒng)計分析,得到如下的柱狀圖.已知從A,B,C三種分期付款銷售中,該經(jīng)銷商每銷售此品牌汽車1輛所獲得的利潤分別是1萬元,2萬元,3萬元.以這100 位客戶所采用的分期付款方式的頻率代替1位客戶采用相應(yīng)分期付款方式的概率.
(Ⅰ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤不大于2萬元的概率;
(Ⅱ)求采用上述分期付款方式銷售此品牌汽車1輛,該汽車經(jīng)銷商從中所獲得的利潤的平均值;
(Ⅲ)根據(jù)某稅收規(guī)定,該汽車經(jīng)銷商每月(按30天計)上交稅收的標準如表:
月利潤(單位:萬元)在(0,100]內(nèi)的部分超過100且不超過150的部分超過150的部分
稅率1%2%4%
若該經(jīng)銷商按上述分期付款方式每天平均銷售此品牌汽車3輛,估計其月純收入(純收入=總利潤-上交稅款)的平均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若$|{\overrightarrow{e_1}}|=|{\overrightarrow{e_2}}|=1$,$cos<\overrightarrow{e_1},\overrightarrow{e_2}>=-\frac{1}{5}$,且$\overrightarrow a=2\overrightarrow{e_1}-\overrightarrow{e_2},\overrightarrow b=\overrightarrow{e_1}+3\overrightarrow{e_2}$,則$\overrightarrow a•\overrightarrow b$=( 。
A.2B.-2C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.將函數(shù)y=sinx+cosx圖象上各點的橫坐標縮短到原來的$\frac{1}{2}$倍,得到y(tǒng)=f(x)的圖象,則y=f(x)的最小正周期為( 。
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.將函數(shù)f(x)=sin2x的圖象向右平移φ$({0<φ<\frac{π}{2}})$個單位后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間$[{0,\frac{π}{6}}]$上單調(diào)遞增,且函數(shù)g(x)的最大負零點在區(qū)間$({-\frac{π}{3},-\frac{π}{6}})$上,則φ的取值范圍是( 。
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{6}$,$\frac{5π}{12}$)C.[$\frac{π}{6}$,$\frac{π}{3}$]D.($\frac{π}{6}$,$\frac{π}{4}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在命題p的四種形式(原命題、逆命題、否命題、逆否命題)中,正確命題的個數(shù)記為f(p).已知命題p:“若x2-3x+2<0,則1<x<2”.那么f(p)=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知n∈N*,數(shù)列{dn}滿足${d_n}=\frac{{3+{{({-1})}^n}}}{2}$,數(shù)列{an}滿足an=d1+d2+d3+…+d2n;又在數(shù)列{bn}中b1=2,且對?m,n∈N*,$b_n^m=b_m^n$.
( I)求數(shù)列{an}和{bn}的通項公式;
( II)將數(shù)列{bn}中的第a1項、第a2項、第a3項、…、第an項刪去后,剩余的項按從小到大的順序排列成新的數(shù)列{cn},求數(shù)列{cn}的前2016項的和T2016

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.化簡:$\frac{tan(2π-θ)sin(-2π-θ)cos(6π-θ)}{cos(θ-π)sin(5π+θ)}$.

查看答案和解析>>

同步練習冊答案