【題目】已知,圓C:x2+y2﹣8y+12=0,直線l:ax+y+2a=0.
(1)當a為何值時,直線l與圓C相切;
(2)當直線l與圓C相交于A、B兩點,且AB=2 時,求直線l的方程.
【答案】
(1)解:將圓C的方程x2+y2﹣8y+12=0配方得標準方程為x2+(y﹣4)2=4,
則此圓的圓心為(0,4),半徑為2.
若直線l與圓C相切,則有 =2.解得
(2)解:聯立方程 并消去y,
得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.
設此方程的兩根分別為x1、x2,
所以x1+x2=﹣ ,x1x2=
則AB= = =2
兩邊平方并代入解得:a=﹣7或a=﹣1,
∴直線l的方程是7x﹣y+14=0和x﹣y+2=0
【解析】把圓的方程化為標準方程后,找出圓心坐標與圓的半徑r,(1)當直線l與圓相切時,圓心到直線的距離d等于圓的半徑r,利用點到直線的距離公式表示出圓心到直線l的距離d,讓d等于圓的半徑r,列出關于a的方程,求出方程的解即可得到a的值;(2)聯立圓C和直線l的方程,消去y后,得到關于x的一元二次方程,然后利用韋達定理表示出AB的長度,列出關于a的方程,求出方程的解即可得到a的值.
科目:高中數學 來源: 題型:
【題目】進行隨機抽樣時,甲學生認為:“每次抽取一個個體時,任一個個體a被抽到的概率”與“在整個抽樣過程中個體a被抽到的概率”是一回事,而學生乙則認為兩者不是一回事.你認為甲、乙兩學生中哪個對?請列舉具體例子加以說明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某食品廠需要定期購買食品配料,該廠每天需要食品配料200千克,配料的價格為1.8元/千克,每次購買配料需支付運費236元,每次購買來的配料還需支付保管費用,其標準如下:7天以內(含7天),無論重量多少,均按10元/天支付;超出7天以外的天數,根據實際剩余配料的重量,以每天0.03元/千克支付.
(1)當9天購買一次配料時,求該廠用于配料的保管費用是多少元?
(2)設該廠天購買一次配料,求該廠在這天中用于配料的總費用(元)關于的函數關系式,并求該廠多少天購買一次配料才能使平均每天支付的費用最少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側棱AA1⊥底面ABC,AB⊥BC,D為AC的中點,AA1=AB=2.
(1)求證:AB1∥平面BC1D;
(2)若BC=3,求三棱錐D﹣BC1C的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點.
(1)求證:直線BD1∥平面PAC;
(2)求證:平面PAC⊥平面BDD1B1;
(3)求CP與平面BDD1B1所成的角大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越長,污水凈化效果越好.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米, 米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數,并寫出定義域;
(2)若 ,求此時管道的長度L;
(3)當θ取何值時,污水凈化效果最好?并求出此時管道的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的焦距為2 ,長軸長為4.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)如圖,過坐標原點O作兩條互相垂直的射線,與橢圓C交于A,B兩點.設A(x1 , y1),B(x2 , y2),直線AB的方程為y=﹣2x+m(m>0),試求m的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com