14.在極坐標(biāo)系中,已知點(diǎn)(4,$\frac{π}{4}$),直線為ρsin(θ+$\frac{π}{4}$)=1.
(1)求點(diǎn)(4,$\frac{π}{4}$)的直角坐標(biāo)系下的坐標(biāo)與直線的普通方程;
(2)求點(diǎn)(4,$\frac{π}{4}$)到直線ρsin(θ+$\frac{π}{4}$)=1的距離.

分析 (1)利用極坐標(biāo)與直角坐標(biāo)互化的方法,可得結(jié)論;
(2)利用點(diǎn)到直線的距離公式,可得結(jié)論.

解答 解:(1)點(diǎn)(4,$\frac{π}{4}$)化成直角坐標(biāo)為(2$\sqrt{2}$,2$\sqrt{2}$),
直線ρsin(θ+$\frac{π}{4}$)=1,化成直角坐標(biāo)方程為$\frac{\sqrt{2}}{2}x+\frac{\sqrt{2}}{2}y=1$,即x+y-$\sqrt{2}$=0.
(2)由題意可知,點(diǎn)(4,$\frac{π}{4}$)到直線ρsin(θ+$\frac{π}{4}$)=1的距離,
就是點(diǎn)(2$\sqrt{2}$,2$\sqrt{2}$)到直線x+y-$\sqrt{2}$=0的距離,
由距離公式可得為d=$\frac{|2\sqrt{2}+2\sqrt{2}-\sqrt{2}|}{\sqrt{2}}$=3.

點(diǎn)評 本題考查極坐標(biāo)與直角坐標(biāo)互化的方法、點(diǎn)到直線的距離公式,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ex+ax,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1.
(1)求實(shí)數(shù)a的值及函數(shù)f(x)的單調(diào)區(qū)間;
(2)若b>0,f(x)≥b(b-1)x+c,求b2c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)公差為-$\frac{1}{6}$的等差數(shù)列,如果a1+a4+a7+…+a97=50,那么a3+a6+a9+…+a99=(  )
A.$\frac{89}{2}$B.61C.39D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=$\frac{1}{\sqrt{6+5x-{x}^{2}}}$的單調(diào)遞增區(qū)間是( 。
A.(-∞,$\frac{5}{2}$)B.($\frac{5}{2}$,+∞)C.(-1,$\frac{5}{2}$)D.($\frac{5}{2}$,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.某公司對140名新員工進(jìn)行培訓(xùn),新員工中男員工有80人,女員工有60人,培訓(xùn)結(jié)束后用分層抽樣的方法調(diào)查培訓(xùn)結(jié)果.已知男員工抽取了16人,則女員工應(yīng)抽取人數(shù)為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)為定義在R上的增函數(shù),若對于任意的x,y∈R,都有f(x+y)=f(x)+f(y).
(1)求f(0),并證明f(x)為R上的奇函數(shù);
(2)若f(1)=2,解關(guān)于x的不等式f(x)-f(3-x)<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求數(shù)列{$\frac{3n-1}{{2}^{n}}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:“?x∈N,都有$\frac{1}{{x}^{2}+x+1}$>0”則¬p為( 。
A.?x∈N,使得$\frac{1}{{x}^{2}+x+1}$≤0B.?x0∈N,使得$\frac{1}{{{x}_{0}}^{2}+{x}_{0}+1}$≤0
C.?x∈N,使得x2+x+1≤0D.?x0∈N,使得x02+x0+1≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,有f(x+1)=-f(x),且當(dāng)x∈[0,1)時,f(x)=log2(x+1),給出下列命題:
①直線y=x與函數(shù)f(x)的圖象有兩個交點(diǎn);
②函數(shù)f(x)的值域為(-1,1);
③函數(shù)f(x)在定義域上是周期為2的函數(shù);
④f(2016)+f(-2017)=0.
其中正確的有①②④.

查看答案和解析>>

同步練習(xí)冊答案