已知函數(shù)f(x)=4x2-kx-8在[1,2]上具有單調(diào)性,則k的取值范圍是( 。
A、(-∞,8]∪[16,+∞)
B、[8,16]
C、(-∞,8)∪(16,+∞)
D、[8,+∞)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的對(duì)稱軸,根據(jù)函數(shù)的單調(diào)性,得到不等式,解出即可.
解答: 解:∵對(duì)稱軸x=
k
8
,
若函數(shù)f(x)在[1,2]上單調(diào),
k
8
≥2或
k
8
≤1,
解得:k≥16或k≤8,
故選:A.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),考查了函數(shù)的單調(diào)性,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1棱長為1,E,F(xiàn)分別為AA1,CD的中點(diǎn),則四面體D1EBF的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,BD⊥PC,AB=BC=2,AD=CD=
7
,PA=
3
,PC=
15
,∠ABC=120°,G為線段PC上的點(diǎn).
(1)求證:PA⊥面ABCD;
(2)若G滿足
PG
GC
=
3
2
,求證:PC⊥面BGD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=ex+
a
ex
是奇函數(shù),若曲線y=f(x)的一條切線的斜率是2,則切點(diǎn)的縱坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)f(x)=a
x2+1
|x|
(a>0,a≠1),有以下命題:
①函數(shù)圖象關(guān)于軸對(duì)稱;
②當(dāng)a>1時(shí),函數(shù)在(1,+∞)上為增函數(shù);
③當(dāng)0<a<1時(shí),函數(shù)有最大值,且最大值為a2;
④函數(shù)的值域?yàn)椋╝2,+∞).
其中正確命題的序號(hào)是
 
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=n2+bn(b為常數(shù)),且對(duì)于任意的k∈N*,ak,a2k,a4k構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{
1
anan+1
}
的前n項(xiàng)和為Tn,求使不等式Tn
3
13
成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算定積分:
1
0
xarctanxdx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin(ωx-
π
6
)(ω>0)的圖象向右平移
π
4
個(gè)單位長度后,所得圖象與原圖象重合,則ω的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第四象限角,且sin(π+α)=
1
5
,則sin(α-
3
2
π)的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案