【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.
【答案】
(1)
解:由題意可得e= = ,
又圓O的方程為x2+y2=b2,
因為直線l:x﹣y+2=0與圓O相切,
b= ,由a2=3c2=3(a2﹣b2),即a2=3.
所以橢圓C的方程為
(2)
解:由(1)得知圓的方程為x2+y2=2.A(﹣ ,0),直線m 的方程為:y=k(x+ ).
設R(x1,y1),S(x2,y2),由
得
,
由△=12k4﹣4(1+k2)(3k2﹣2)>0的﹣ <k< …①
因為△ORS是鈍角三角形,∴ = = .
…②
由A、R、S三點不共線,知k≠0. ③
由①、②、③,得直線m的斜率k的取值范圍是(﹣ ,0)∪(0, )
【解析】(1)求得圓O的方程,運用直線和相切的條件:d=r,求得b,再由離心率公式和a,b,c的關系,可得a,進而得到橢圓方程;(2)先設出點R,S的坐標,利用△ORS是鈍角三角形,求得 =x1x2+y1y2<0,從而求出斜率k的取值范圍
科目:高中數(shù)學 來源: 題型:
【題目】已知t為實數(shù),函數(shù),其中
(1)若,求的取值范圍。
(2)當時,的圖象始終在的圖象的下方,求t的取值范圍;
(3)設,當時,函數(shù)的值域為,若的最小值為,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“綠水青山就是金山銀山”,為了保護環(huán)境,減少空氣污染,某空氣凈化器制造廠,決定投入生產(chǎn)某種惠民型的空氣凈化器.根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到年生產(chǎn)銷售的統(tǒng)計規(guī)律如下:①年固定生產(chǎn)成本為2萬元;②每生產(chǎn)該型號空氣凈化器1百臺,成本增加1萬元;③年生產(chǎn)x百臺的銷售收入(萬元).假定生產(chǎn)的該型號空氣凈化器都能賣出(利潤=銷售收入﹣生產(chǎn)成本).
(1)為使該產(chǎn)品的生產(chǎn)不虧本,年產(chǎn)量x應控制在什么范圍內(nèi)?
(2)該產(chǎn)品生產(chǎn)多少臺時,可使年利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種商品在天內(nèi)每件的銷售價格(元)與時間()(天)的函數(shù)關系滿足函數(shù),該商品在天內(nèi)日銷售量(件)與時間()(天)之間滿足一次函數(shù)關系如下表:
第天 | ||||
件 |
(1)根據(jù)表中提供的數(shù)據(jù),確定日銷售量與時間的一次函數(shù)關系式;
(2)求該商品的日銷售金額的最大值并指出日銷售金額最大的一天是天中的第幾天,(日銷售金額每件的銷售價格日銷售量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制的1、2、3、4在二進制分別表示為1、10、11、100.下面是某同學設計的將二進制數(shù)11111化為十進制數(shù)的一個流程圖,則判斷框內(nèi)應填入的條件是( )
A.i>4
B.i≤4
C.i>5
D.i≤5
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,,,,、分為、的中點,.
()求證:平面平面.
()若,求四面體的體積.
()設,若平面與平面所成銳二面角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)在平面直角坐標系中,橢圓的長軸長,短軸長.
(1)求橢圓的方程;
(2)記橢圓的左右頂點,分別過作軸的垂線交直線于點,為 橢圓上位于軸上方的動點,直線,分別交直線于點,.
(i)當直線的斜率為2時,求的面積;
(ii)求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=|x2-4x+3|.
(1)作出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其單調(diào)性;
(3)求集合M={m|使方程f(x)=m有四個不相等的實根}.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com