【題目】

已知函數(shù)fx=,其中a>0.

)若a=1,求曲線y=fx)在點(2,f2))處的切線方程;

)若在區(qū)間上,fx>0恒成立,求a的取值范圍.

【答案】y=6x-90<a<5

【解析】

試題(1)利用導數(shù)求切線斜率即可;
(2)在區(qū)間上,恒成立恒成立,令,解得,以下分兩種情況,討論,分類求出函數(shù)最大值即可.

試題解析:(1)當a=1時,f(x)=x3x2+1,f(2)=3;f' (x)=3x2-3x, f' (2)=6.

所以曲線yf(x) 在點(2,f(2))處的切線方程y-3=6(x-2),即y=6x-9.

(2)f' (x)=3ax2-3x=3x(ax-1),令f' (x)=0,解得x=0或x

以下分兩種情況討論:

①若0<a≤2,則,當x變化時,f' (x),f(x)的變化情況如下表:

x

(-,0)

0

(0,

f' (x)

0

f(x)

遞增

極大值

遞減

x[-,]上,f(x)>0等價于,即解不等式組得-5<a<5.因此0<a≤2.

②若a>2,則0<,當x變化時,f' (x),f(x)的變化情況如下表:

X

(-,0)

0

(0,

,

f' (x)

0

0

f'(x)

遞增

極大值

遞減

極小值

遞增

x[-,]上,f(x)>0等價于,即解不等式組得a<5,或a<-.因此2<a<5. 綜合①和②,可知a的取值范圍為0<a<5.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線過點,且漸近線方程為,直線與曲線交于點、兩點.

(1)求雙曲線的方程;

(2)若直線過原點,點是曲線上任一點,直線的斜率都存在,記為、,試探究的值是否與點及直線有關,并證明你的結論;

(3)若直線過點,問在軸上是否存在定點,使得為常數(shù)?若存在,求出點坐標及此常數(shù)的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,

(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標

(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,是等腰直角三角形,,D,E分別是AC,AB上的點,,沿DE折起,得到如圖2所示的四棱錐,使得

圖1 圖2

(1)證明:平面平面BCD;

(2)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著城市地鐵建設的持續(xù)推進,市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計,某條地鐵線路運行時,發(fā)車時間間隔t(單位:分鐘)滿足:4≤t≤15N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時間間隔t近似地滿足下列函數(shù)關系:,其中.

(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時間間隔t的值.

(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當發(fā)車時間間隔t為多少時,平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調性;

2)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上海地鐵四通八達,給市民出行帶來便利,已知某條線路運行時,地鐵的發(fā)車時間間隔(單位:分字)滿足:,經(jīng)測算,地鐵載客量與發(fā)車時間間隔滿足,其中.

1)請你說明的實際意義;

2)若該線路每分鐘的凈收益為(元),問當發(fā)車時間間隔為多少時,該線路每分鐘的凈收益最大?并求最大凈收益.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知在平面直角坐標系中,圓的參數(shù)方程為 (為參數(shù)).以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系.

(I)求圓的普通方程及其極坐標方程;

(II)設直線的極坐標方程為,射線與圓的交點為,與直線的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)時,討論函數(shù)的單調性;

(2)使得不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案