過雙曲線的左焦點F1的直線交雙曲線的左支于A,B兩點,右焦點F2,則|AF2|+|BF2|-|AB|的值是   
【答案】分析:根據(jù)雙曲線的標(biāo)準(zhǔn)方程可得:a=2,再由雙曲線的定義可得:|AF2|-|AF1|=2a=4,|BF2|-|BF1|=2a=4,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=8,再根據(jù)A、B兩點的位置特征得到答案.
解答:解:根據(jù)雙曲線的標(biāo)準(zhǔn)方程可得:a=2,
由雙曲線的定義可得:|AF2|-|AF1|=2a=4…①,|BF2|-|BF1|=2a=4…②,
所以①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=8,
因為過雙曲線的左焦點F1的直線交雙曲線的左支于A,B兩點,
所以|AF1|+|BF1|=|AB|,
所以|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=8.
故答案為:8.
點評:本題主要考查雙曲線的定義與雙曲線的標(biāo)準(zhǔn)方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

直線l:x-2y+2=0過雙曲線的左焦點F1和一個虛頂點B,該雙曲線的離心率為( 。
A、
2
B、
3
C、
2
3
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線x2-16y2=16左右焦點分別為F1,F(xiàn)2,直線l過雙曲線的左焦點F1交雙曲線的左支與A,B,且|AB|=12,則△ABF2的周長為
40
40

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線的左焦點F1,引直線交雙曲線左支于M、N,F2為雙曲線右焦點,若的周長為40,則弦                                               

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市靜安區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線x2-y2=2若直線n的斜率為2 ,直線n與雙曲線相交于A、B兩點,線段AB的中點為P,

(1)求點P的坐標(biāo)(x,y)滿足的方程(不要求寫出變量的取值范圍);

(2)過雙曲線的左焦點F1,作傾斜角為的直線m交雙曲線于M、N兩點,期中,F(xiàn)2是雙曲線的右焦點,求△F2MN的面積S關(guān)于傾斜角的表達(dá)式。

 

查看答案和解析>>

同步練習(xí)冊答案