【題目】下列說法正確的序號是__________

①用刻畫回歸效果,當(dāng) 越大時,模型的擬合效果越差;反之,則越好;

②可導(dǎo)函數(shù)處取極值,則

③歸納推理是由特殊到一般的推理,而演繹推理是由一般到特殊的推理;

④綜合法證明數(shù)學(xué)問題是“由因?qū)Ч,分析法證明數(shù)學(xué)問題是“執(zhí)果索因”。

【答案】②③④

【解析】分析:對每個命題進行判斷,一是相關(guān)系數(shù)的概念,二是極值的概念,三是歸納推理與演繹推理的概念,四是綜合法與分析法的概念.

詳解:①當(dāng)越大時,模型的擬合效果越好;反之,則越差,①錯;②可導(dǎo)函數(shù)處取極值,則,②正確;③歸納推理是由特殊到一般的推理,而演繹推理是由一般到特殊的推理,③正確;④綜合法證明數(shù)學(xué)問題是“由因?qū)Ч保治龇ㄗC明數(shù)學(xué)問題是“執(zhí)果索因”, ④正確.

故答案為②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數(shù).當(dāng)x>0時,f(x)=x2﹣4x,則不等式f(x)>x 的解集用區(qū)間表示為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)設(shè)0x,求函數(shù)yx32x)的最大值;

2)解關(guān)于x的不等式x2-a+1x+a0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(x﹣ )+cos(x﹣ ),g(x)=2sin2
(1)若α是第一象限角,且f(α)= ,求g(α)的值;
(2)求使f(x)≥g(x)成立的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)證明:AC⊥B1D;
(2)求直線B1C1與平面ACD1所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù) 的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小區(qū)抽取100戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50至350度之間,頻率分布直方圖如圖所示:

(Ⅰ)直方圖中x的值為;
(Ⅱ)在這些用戶中,用電量落在區(qū)間[100,250)內(nèi)的戶數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,點C是圓O上異于A,B的點,直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點.

(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個交點為D,且點Q滿足 .記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的公比為q,記bn=amn1+1+amn1+2+…+amn1+m , cn=amn1+1amn1+2…amn1+m , (m,n∈N*),則以下結(jié)論一定正確的是(
A.數(shù)列{bn}為等差數(shù)列,公差為qm
B.數(shù)列{bn}為等比數(shù)列,公比為q2m
C.數(shù)列{cn}為等比數(shù)列,公比為
D.數(shù)列{cn}為等比數(shù)列,公比為

查看答案和解析>>

同步練習(xí)冊答案