分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),通過(guò)討論判別式的符號(hào),求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)問(wèn)題轉(zhuǎn)化為不等式x1[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0對(duì)任意的x1∈(-∞,1]恒成立,通過(guò)討論x1 的范圍,求出λ的值即可.
解答 解:(Ⅰ)f′(x)=(-x2+2x+a)e1-x,△4+4a,
當(dāng)△=4+4a≤0,即a≤-1時(shí),-x2+2x+a≤0恒成立,
即函數(shù)f(x)是R上的減函數(shù).
當(dāng)△=4+4a>0,即a>-1時(shí),設(shè)-x2+2x+a=0的兩根:x1=1-$\sqrt{1+a}$,x2=1+$\sqrt{1+a}$,
可得函數(shù)f(x)是(-∞,x1)、(x2,+∞)上的減函數(shù),是(x1,x2)上的增函數(shù).
(Ⅱ)根據(jù)題意,方程-x2+2x+a=0有兩個(gè)不同的實(shí)根x1,x2,(x1<x2),
∴△=4+4a>0,即a>-1,且x1+x2=2,
∵x1<x2,∴x1<1,
由x2f(x1)≤λ[f′(x1)-a(${e}^{1{-x}_{1}}$+1)],得
(2-x1)(${{x}_{1}}^{2}$-a)${e}^{1{-x}_{1}}$≤λ[(2x1-${{x}_{1}}^{2}$)${e}^{1{-x}_{1}}$-a],其中-${{x}_{1}}^{2}$+2x1+a=0,
∴上式化為(2-x1)(2x1)${e}^{1{-x}_{1}}$≤λ[(2x1-${{x}_{1}}^{2}$)${e}^{1{-x}_{1}}$+(2x1-${{x}_{1}}^{2}$)],整理:
x1(2-x1)[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0,其中2-x1>1,即
不等式x1[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0對(duì)任意的x1∈(-∞,1]恒成立.
①當(dāng)x1=0時(shí),不等式x1[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0恒成立,λ∈R;
②當(dāng)x1∈(0,1)時(shí),2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)≤0恒成立,
即λ≥$\frac{{2e}^{1{-x}_{1}}}{{e}^{1{-x}_{1}}+1}$,
令函數(shù)g(x)=$\frac{{2e}^{1{-x}_{1}}}{{e}^{1{-x}_{1}}+1}$=2-$\frac{2}{{e}^{1-x}+1}$,
顯然,函數(shù)g(x)是R上的減函數(shù),
∴當(dāng)x∈(0,1)時(shí),g(x)<g(0)=$\frac{2e}{e+1}$,即λ≥$\frac{2e}{e+1}$,
③當(dāng)x1∈(-∞,0)時(shí),2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)≥0恒成立,
即λ≤$\frac{{2e}^{1{-x}_{1}}}{{e}^{1{-x}_{1}}+1}$,
由②可知,當(dāng)x∈(-∞,0)時(shí),g(x)>g(0)=$\frac{2e}{e+1}$,
即λ≤$\frac{2e}{e+1}$.
綜上所述,λ=$\frac{2e}{e+1}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查分類(lèi)討論思想,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必然事件 | B. | 不可能事件 | ||
C. | 隨機(jī)事件 | D. | 以上選項(xiàng)均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{3}{2}$ | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com