5.函數(shù)f(x)=(x2-a)e1-x,a∈R
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2)時(shí),總有x2f(x1)≤λ[f′(x1)-a(e${\;}^{1-{x}_{1}}$+1)](其中f′(x)為f(x)的導(dǎo)函數(shù)),求實(shí)數(shù)λ的值.

分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),通過(guò)討論判別式的符號(hào),求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)問(wèn)題轉(zhuǎn)化為不等式x1[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0對(duì)任意的x1∈(-∞,1]恒成立,通過(guò)討論x1 的范圍,求出λ的值即可.

解答 解:(Ⅰ)f′(x)=(-x2+2x+a)e1-x,△4+4a,
當(dāng)△=4+4a≤0,即a≤-1時(shí),-x2+2x+a≤0恒成立,
即函數(shù)f(x)是R上的減函數(shù).
當(dāng)△=4+4a>0,即a>-1時(shí),設(shè)-x2+2x+a=0的兩根:x1=1-$\sqrt{1+a}$,x2=1+$\sqrt{1+a}$,
可得函數(shù)f(x)是(-∞,x1)、(x2,+∞)上的減函數(shù),是(x1,x2)上的增函數(shù).
(Ⅱ)根據(jù)題意,方程-x2+2x+a=0有兩個(gè)不同的實(shí)根x1,x2,(x1<x2),
∴△=4+4a>0,即a>-1,且x1+x2=2,
∵x1<x2,∴x1<1,
由x2f(x1)≤λ[f′(x1)-a(${e}^{1{-x}_{1}}$+1)],得
(2-x1)(${{x}_{1}}^{2}$-a)${e}^{1{-x}_{1}}$≤λ[(2x1-${{x}_{1}}^{2}$)${e}^{1{-x}_{1}}$-a],其中-${{x}_{1}}^{2}$+2x1+a=0,
∴上式化為(2-x1)(2x1)${e}^{1{-x}_{1}}$≤λ[(2x1-${{x}_{1}}^{2}$)${e}^{1{-x}_{1}}$+(2x1-${{x}_{1}}^{2}$)],整理:
x1(2-x1)[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0,其中2-x1>1,即
不等式x1[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0對(duì)任意的x1∈(-∞,1]恒成立.
①當(dāng)x1=0時(shí),不等式x1[2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)]≤0恒成立,λ∈R;
②當(dāng)x1∈(0,1)時(shí),2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)≤0恒成立,
即λ≥$\frac{{2e}^{1{-x}_{1}}}{{e}^{1{-x}_{1}}+1}$,
令函數(shù)g(x)=$\frac{{2e}^{1{-x}_{1}}}{{e}^{1{-x}_{1}}+1}$=2-$\frac{2}{{e}^{1-x}+1}$,
顯然,函數(shù)g(x)是R上的減函數(shù),
∴當(dāng)x∈(0,1)時(shí),g(x)<g(0)=$\frac{2e}{e+1}$,即λ≥$\frac{2e}{e+1}$,
③當(dāng)x1∈(-∞,0)時(shí),2${e}^{1{-x}_{1}}$-λ(${e}^{1{-x}_{1}}$+1)≥0恒成立,
即λ≤$\frac{{2e}^{1{-x}_{1}}}{{e}^{1{-x}_{1}}+1}$,
由②可知,當(dāng)x∈(-∞,0)時(shí),g(x)>g(0)=$\frac{2e}{e+1}$,
即λ≤$\frac{2e}{e+1}$.
綜上所述,λ=$\frac{2e}{e+1}$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,考查分類(lèi)討論思想,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=3,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f(x)+2alnx,且g(x)有兩個(gè)極值點(diǎn)xl,x2,其中x1∈(0,e],求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在1,2,3,…,10這10個(gè)數(shù)字中,任取3個(gè)不同的數(shù)字,那么“這三個(gè)數(shù)字的和大于5”這一事件是( 。
A.必然事件B.不可能事件
C.隨機(jī)事件D.以上選項(xiàng)均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知a>0,b>0,b為常數(shù),函數(shù)f(x)=ax-bx2
(I)若對(duì)x∈R都有f(x)≤1,且當(dāng)x∈[0,1]時(shí),f(x)為單調(diào)函數(shù),證明:b≤1;
(Ⅱ)若對(duì)任意x∈[0,1],都|f(x)|≤1,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知球O與正四棱柱ABCD-A1B1C1D1的底面ABCD及四個(gè)側(cè)面都相切,對(duì)角線BD1與球面的兩個(gè)交點(diǎn)分別為M,N,M為線段BD的中點(diǎn),MN=$\sqrt{6}$.則球O的體積為$\frac{9}{2}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S5=-15,$\frac{3}{7}<d<\frac{1}{2}$,則當(dāng)Sn取得最小值時(shí)n的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)y=2acos(2x-$\frac{π}{3}$)+b的定義域是[0,$\frac{π}{2}$],值域是[-5,1],求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=-sin2x-cosx+2,x∈[0.$\frac{2π}{3}$]的最大值和最小值的和為( 。
A.$\frac{7}{2}$B.$\frac{5}{2}$C.$\frac{3}{2}$D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案