【題目】已知是正項數(shù)列的前項和,,.
(1)證明:數(shù)列是等差數(shù)列;
(2)設(shè),數(shù)列的前項和,
①求證:;
②解關(guān)于的不等式:.
【答案】(1)見解析;(2)①見解析;②,
【解析】
(1)運用數(shù)列的遞推式,結(jié)合等差數(shù)列的定義和通項公式,可得所求;
(2)①,運用數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式和不等式的性質(zhì),即可得證;
②原不等式化為,即,運用二項式定理和不等式的性質(zhì),可得解集.
(1)證明:是正項數(shù)列的求和,,,
可得,則,
當時,,又,
兩式相減可得,
化為,
由正項數(shù)列,可得,
可得數(shù)列是首項和公差均為1的等差數(shù)列;
(2)①證明:,前項和,
,
兩式相減可得,
化為,
可得;
②即,
化為,即,
,
可得時;時,;不成立,
故原不等式的解集為,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,橢圓:的離心率為,y軸于橢圓相交于A、B兩點,,C、D是橢圓上異于A、B的任意兩點,且直線AC、BD相交于點M,直線AD、BC相交于點N.
求橢圓的方程;
求直線MN的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.
(1)求出f(5)的值;
(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【選修4-4:坐標系與參數(shù)方程】
在平面直角坐標系,已知曲線(為參數(shù)),在以原點為極點, 軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為。
(1)求曲線的普通方程和直線的直角坐標方程;
(2)過點且與直線平行的直線交于, 兩點,求點到, 的距離之積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( ).
A. ,“”是“”的必要不充分條件
B. “且為真命題”是“或為真命題” 的必要不充分條件
C. 命題“,使得”的否定是:“”
D. 命題:“”,則是真命題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭記錄了未使用節(jié)水龍頭30天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭30天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:
(一)未使用節(jié)水龍頭30天的日用水量頻數(shù)分布表
日用水量 | |||||
頻數(shù) | 2 | 3 | 8 | 12 | 5 |
(二)使用了節(jié)水龍頭30天的日用水量頻數(shù)分布表
日用水量 | |||||
頻數(shù) | 2 | 5 | 11 | 6 | 6 |
(1)估計該家庭使用了節(jié)水龍頭后,日用水量小于的概率;
(2)估計該家庭使用節(jié)水龍頭后,平均每天能節(jié)省多少水?(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐S- ABCD中,SD⊥底面ABCD,AB//DC,AD ⊥ DC,,AB=AD=1DC=SD=2, E為棱SB上的一點,且SE=2EB.
(I)證明:DE⊥平面SBC;
(II)證明:求二面角A- DE -C的大小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com