已知、是不共線的向量,且=(5cosα,5sinα),=(5cosβ,5sinβ)
(1)求證:+-垂直.
(2)若|+|=,求cos(α-β)
【答案】分析:(1)根據(jù)兩向量的坐標(biāo)表示分別求出兩向量的模,要證明(+)⊥(-),只需得到兩向量的數(shù)量積為0,故求出兩向量的數(shù)量積,化簡(jiǎn)后將兩向量的模代入即可得到值為0,得證;
(2)把已知的等于兩邊平方,把兩向量的模代入即可求出的值,然后利用平面向量的數(shù)量積運(yùn)算法則表示出,令其值等于求出的值,即可求出cos(α-β)的值.
解答:解:(1)∵=(5cosα,5sinα),=(5cosβ,5sinβ)
∴||=||=5,
又∵(+)•(-)=-=||2-||2=0,
∴(+)⊥(-);                   
(2)|+|2=(+2=2+2+2=50+2=75,
=
又∵=25cosαcosβ+sinαsinβ=25cos(α-β)=
∴cos(α-β)=.(10分)
點(diǎn)評(píng):此題考查了平面向量的數(shù)量積運(yùn)算,以及兩角和與差的余弦函數(shù)公式,熟練掌握平面向量的數(shù)量積運(yùn)算法則及三角函數(shù)公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知、是不共線的向量,,那么、、三點(diǎn)共線的充要條件為

A.             B.              C.                  D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試(重慶卷)數(shù)學(xué)文史類模擬試卷(二) 題型:選擇題

已知、是不共線的向量,,,則、、 三點(diǎn)共線的充要條件是

A.            B.        C.         D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省杭州市蕭山區(qū)三校聯(lián)考高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知是不共線的向量,+,=(λ,μ∈R),那么A、B、C三點(diǎn)共線的充要條件為( )
A.λ+μ=1
B.λ-μ=1
C.λμ=-1
D.λμ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省宜賓市南溪一中高考數(shù)學(xué)一診模擬試卷3(文科)(解析版) 題型:選擇題

已知、是不共線的向量,+,=(λ,μ∈R),那么A、B、C三點(diǎn)共線的充要條件為( )
A.λ+μ=1
B.λ-μ=1
C.λμ=-1
D.λμ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年遼寧省丹東市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知、是不共線的向量,+=(λ,μ∈R),那么A、B、C三點(diǎn)共線的充要條件為( )
A.λ+μ=1
B.λ-μ=1
C.λμ=-1
D.λμ=1

查看答案和解析>>

同步練習(xí)冊(cè)答案