【題目】設(shè)數(shù)列{an}的前n項和為Sn.已知2Sn=3n+3.
(1)求{an}的通項公式;
(2)若數(shù)列{bn}滿足anbn=log3an,求{bn}的前n項和Tn.
【答案】(1) ;(2) .
【解析】試題分析:
(1)由遞推關(guān)系可得a1=3,利用通項公式與前n項和的關(guān)系可知:當(dāng)n>1時,2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,則an=3n-1,綜上可得: ;
(2)結(jié)合(1)中求得的通項公式錯位相減可得{bn}的前n項和.
試題解析:
(1)因為2Sn=3n+3,
所以2a1=3+3,故a1=3,
當(dāng)n>1時,2Sn-1=3n-1+3,
此時2an=2Sn-2Sn-1=3n-3n-1=2×3n-1,
即an=3n-1,
顯然a1不滿足an=3n-1,
所以an=
(2)因為anbn=log3an,所以b1=,
當(dāng)n>1時,bn=31-nlog33n-1=(n-1)·31-n,
所以T1=b1=.
當(dāng)n>1時,Tn=b1+b2+b3+…+bn=+[1×3-1+2×3-2+3×3-3+…+(n-1)×31-n],
所以3Tn=1+[1×30+2×3-1+3×3-2+…+(n-1)×32-n],
兩式相減,得2Tn=+(30+3-1+3-2+3-3+…+32-n)-(n-1)×31-n
=+-(n-1)×31-n
=-,
所以Tn=-.
經(jīng)檢驗,n=1時也適合.
綜上可得Tn=-.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:經(jīng)過點(,),且兩個焦點,的坐標依次為(1,0)和(1,0).
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè),是橢圓上的兩個動點,為坐標原點,直線的斜率為,直線的斜率為,求當(dāng)為何值時,直線與以原點為圓心的定圓相切,并寫出此定圓的標準方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F為拋物線C:y2=4x的焦點,過F作兩條互相垂直的直線l1 , l2 , 直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,則|AB|+|DE|的最小值為( 。
A.16
B.14
C.12
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M過C(1,-1),D(-1,1)兩點,且圓心M在x+y-2=0上.
(1)求圓M的方程;
(2)設(shè)點P是直線3x+4y+8=0上的動點,PA,PB是圓M的兩條切線,A,B為切點,求四邊形PAMB面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖程序框圖是為了求出滿足3n﹣2n>1000的最小偶數(shù)n,那么在 和 兩個空白框中,可以分別填入( 。
A.A>1000和n=n+1
B.A>1000和n=n+2
C.A≤1000和n=n+1
D.A≤1000和n=n+2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝有紅球3個、白球2個、黑球1個,從中任取2個,則互斥而不對立的兩個事件是
A. 至少有一個白球;都是白球 B. 至少有一個白球;至少有一個紅球
C. 至少有一個白球;紅、黑球各一個 D. 恰有一個白球;一個白球一個黑球
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對任意的x∈R,都有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時,f(x)=2x﹣1 , 有以下結(jié)論:
①2是函數(shù)f(x)的一個周期;
②函數(shù)f(x)在(1,2)上單調(diào)遞減,在(2,3)上單調(diào)遞增;
③函數(shù)f(x)的最大值為1,最小值為0;
④當(dāng)x∈(3,4)時,f(x)=23﹣x .
其中,正確結(jié)論的序號是 . (請寫出所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com