【題目】已知為復(fù)數(shù),為純虛數(shù),
(1)當(dāng)求點的軌跡方程;
(2)當(dāng)時,若為純虛數(shù),求:的值和的取值范圍.
【答案】(1);(2),.
【解析】
(1)設(shè),,,則為實數(shù),可得,因此,或.通過分類討論即可得出.(2)由(1)可得:①時,,由,可得,利用基本不等式的性質(zhì)即可得出.②時.,由于,即可得出的取值范圍.由為純虛數(shù),化簡可得,再利用模的計算公式、函數(shù)的單調(diào)性即可得出.
(1)設(shè),,,
則為實數(shù),
,,或.
①時,
,,
時,解得.時,.
綜上可得:時,點的軌跡方程是.
②時.
,
,,
解得.
因此時.可得:點的軌跡方程是.
(2)由(1)可得:①時,
,,
時,;時,.
綜上可得:時,,點的軌跡無方程.
②時.
,
,,
解得.
為純虛數(shù),
,
,,
解得,.
,
,
.
,.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,,點分別為棱的中點.
(Ⅰ)求證:∥平面
(Ⅱ)求證:平面平面;
(Ⅲ)在線段上是否存在一點,使得直線與平面所成的角為300?如果存在,求出線段的長;如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列滿足.
(1)求的通項公式;
(2)設(shè)等比數(shù)列滿足,問: 與數(shù)列的第幾項相等?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為 為參數(shù)),過點且傾斜角為的直線與曲線交于兩點.
(1)求的取值范圍;
(2)求中點的軌跡的參數(shù)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知點P的直角坐標(biāo)為,點M的極坐標(biāo)為,若直線l過點P,且傾斜角為,圓C以M為圓心,1為半徑.
(1)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程.
(2)設(shè)直線l與圓C相交于AB兩點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線的極坐標(biāo)方程為.
(1)求直線的直角坐標(biāo)方程與曲線的普通方程;
(2)若是曲線上的動點,為線段的中點,求點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)集合 ,其中為虛數(shù)單位,若復(fù)數(shù),則對應(yīng)的點在復(fù)平面內(nèi)所形成圖形的面積為________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com