【題目】已知函數(shù)在點(diǎn)處的切線與y軸垂直.
(1)若,求的單調(diào)區(qū)間;
(2)若,成立,求a的取值范圍
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)令f′(1)=0求出b,再根據(jù)f′(x)的符號(hào)得出f(x)的單調(diào)區(qū)間;
(2)分類討論,分別求出在(0,e)上的最小值,即可得出a的范圍.
(1),由題,
解得,由,得.
因?yàn)?/span>的定義域?yàn)?/span>,所以,
故當(dāng)時(shí),, 為增函數(shù),
當(dāng)時(shí),,為減函數(shù),
(2)由(1)知,
所以
(。┤,則由(1)知,即恒成立
(ⅱ)若,則且
故當(dāng)時(shí),,為增函數(shù),
當(dāng)時(shí),,為減函數(shù),
,即恒成立
(ⅲ)若,則且
故當(dāng)時(shí),,為增函數(shù),
當(dāng)時(shí),,為減函數(shù),
由題只需即可,即,解得,
而由,且,
得
(ⅳ)若,則,為增函數(shù),且,
所以,,不合題意,舍去;
(ⅴ)若,則,在上都為增函數(shù),且
所以,,不合題意,舍去;
綜上所述,a的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司的營(yíng)銷部門(mén)對(duì)某件商品在網(wǎng)上銷售情況進(jìn)行調(diào)查,發(fā)現(xiàn)當(dāng)這件商品每回饋消費(fèi)者一定的點(diǎn)數(shù),該商品每天的銷量就會(huì)發(fā)生一定的變化,經(jīng)過(guò)統(tǒng)計(jì)得到以下表:
(1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合該商品銷量(百件)與返還點(diǎn)數(shù)之間的相關(guān)關(guān)系.請(qǐng)用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)若返回6個(gè)點(diǎn)時(shí)該商品每天銷量;
(2)該公司為了在購(gòu)物節(jié)期間對(duì)所有商品價(jià)格進(jìn)行新一輪調(diào)整,隨機(jī)抽查了上一年購(gòu)物節(jié)期間60名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表:
網(wǎng)購(gòu)金額 (單位:千元) | 合計(jì) | ||||||
頻數(shù) | 3 | 9 | 9 | 15 | 18 | 6 | 60 |
若網(wǎng)購(gòu)金額超過(guò)2千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)2千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”.該營(yíng)銷部門(mén)為了進(jìn)步了解這60名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”、“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法確定10人,若需從這10人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查.設(shè)為選取的3人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求的分布列和數(shù)學(xué)期望.
參考公式及數(shù)據(jù):①,;②.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在實(shí)數(shù)使得則稱是區(qū)間的一內(nèi)點(diǎn).
(1)求證:的充要條件是存在使得是區(qū)間的一內(nèi)點(diǎn);
(2)若實(shí)數(shù)滿足:求證:存在,使得是區(qū)間的一內(nèi)點(diǎn);
(3)給定實(shí)數(shù),若對(duì)于任意區(qū)間,是區(qū)間的一內(nèi)點(diǎn),是區(qū)間的一內(nèi)點(diǎn),且不等式和不等式對(duì)于任意都恒成立,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,其中.
(1)當(dāng)時(shí),寫(xiě)出函數(shù)的單調(diào)區(qū)間(不要求證明);
(2)若對(duì)于任意的,均有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,過(guò)焦點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為.
(1)求橢圓的方程;
(2)點(diǎn)是橢圓上橫坐標(biāo)大于的動(dòng)點(diǎn),點(diǎn)在軸上,圓內(nèi)切于,試判斷點(diǎn)在何位置時(shí)的長(zhǎng)度最小,并證明你的判斷.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)拋物線的焦點(diǎn)作直線交拋物線于,兩點(diǎn),若,則的值為( )
A. 10 B. 8 C. 6 D. 4
【答案】B
【解析】
根據(jù)過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式,利用題目所給已知條件,求得弦長(zhǎng).
根據(jù)過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式有.故選B.
【點(diǎn)睛】
本小題主要考查過(guò)拋物線焦點(diǎn)的弦長(zhǎng)公式,即.要注意只有過(guò)拋物線焦點(diǎn)的弦長(zhǎng)才可以使用.屬于基礎(chǔ)題.
【題型】單選題
【結(jié)束】
10
【題目】已知橢圓: 的右頂點(diǎn)、上頂點(diǎn)分別為、,坐標(biāo)原點(diǎn)到直線的距離為,且,則橢圓的方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面,,,,,分別是,的中點(diǎn).
(1)求三棱錐的體積;
(2)若異面直線與所成的角為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在原點(diǎn)的橢圓和拋物線有相同的焦點(diǎn),橢圓過(guò)點(diǎn),拋物線的頂點(diǎn)為原點(diǎn).
求橢圓和拋物線的方程;
設(shè)點(diǎn)P為拋物線準(zhǔn)線上的任意一點(diǎn),過(guò)點(diǎn)P作拋物線的兩條切線PA,PB,其中A,B為切點(diǎn).
設(shè)直線PA,PB的斜率分別為,,求證:為定值;
若直線AB交橢圓于C,D兩點(diǎn),,分別是,的面積,試問(wèn):是否有最小值?若有,求出最小值;若沒(méi)有,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)滿足不等式;
命題q:關(guān)于不等式對(duì)任意的恒成立.
(1)若命題為真命題,求實(shí)數(shù)的取值范圍;
(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com