5.若函數(shù)f(x)=x2+bx+c的圖象的頂點(diǎn)在第四象限,則函數(shù)f′(x)的圖象是( 。
A.B.C.D.

分析 先根據(jù)二次函數(shù)的判斷出a,b的符號(hào),再求導(dǎo),根據(jù)一次函數(shù)的性質(zhì)判斷所經(jīng)過的象限即可.

解答 解:∵函數(shù)f(x)=ax2+bx+c的圖象開口向上且頂點(diǎn)在第四象限,
∴a>0,-$\frac{2a}$>0,
∴b<0,
∵f′(x)=2ax+b,
∴函數(shù)f′(x)的圖象經(jīng)過一,三,四象限,
∴A符合,
故選A.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算和一次函數(shù),二次函數(shù)的圖象和性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)曲線C:y=-lnx(0<x≤1)在M(e-t,t)(t≥0)處的切線為l,若直線l與x軸及y軸所圍成的三角形的面積為S(t),則S(t)的最大值是$\frac{2}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若y=alnx+bx2+x在x=1和x=2處有極值,則a=-$\frac{2}{3}$,b=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,且acosB=3,bsinA=4.若△ABC的面積S=10,則△ABC的周長(zhǎng)為( 。
A.10B.$10+2\sqrt{3}$C.$10+2\sqrt{5}$D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{1-x}{1+{x}^{2}}{e}^{x}$.
(Ⅰ)求f(x)在點(diǎn)(0,f(0))處的切線方程;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時(shí),x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,對(duì)于?m∈R,?n∈(0,+∞)使得f(m)=g(n)成立,則n-m的最大值為(  )
A.-ln2B.ln2C.2$\sqrt{e}$-3D.e2-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知i為虛數(shù)單位,則復(fù)數(shù)$Z=\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$的虛部為(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.閱讀程序框圖(如圖),如果輸出的函數(shù)值在[1,3]上,則輸入的實(shí)數(shù)x取值范圍是(  )
A.[0,log23]B.[-2,2]C.[0,log23]∪{2}D.[-2,log23]∪{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,∠BAC=10°,∠ACB=40°,將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1,則在所有旋轉(zhuǎn)過程中,直線B1C與直線AC1所成角的取值范圍為[20°,60°].

查看答案和解析>>

同步練習(xí)冊(cè)答案