【題目】已知函數(shù)f(x)=(2x﹣a)2+(2x+a)2 , x∈[﹣1,1].
(1)若設t=2x﹣2x , 求出t的取值范圍(只需直接寫出結果,不需論證過程);并把f(x)表示為t的函數(shù)g(t);
(2)求f(x)的最小值;
(3)關于x的方程f(x)=2a2有解,求實數(shù)a的取值范圍.

【答案】
(1)解:f(x)=(2x﹣a)2+(2x+a)2=(2x﹣2x2﹣2a(2x﹣2x)+2a2+2

令t=2x﹣2x,x∈[﹣1,1],∴

f(x)表示為t的函數(shù)g(t)=t2﹣2at+2a2+2=(t﹣a)2+a2+2


(2)解:g(t)=t2﹣2at+2a2+2=(t﹣a)2+a2+2,

時,

時,

時, ,


(3)解:方程f(x)=2a2有解,即方程t2﹣2at+2=0在 上有解,而t≠0

,

,則 ,∴函數(shù)在 上單調(diào)遞減, 上單調(diào)遞增

,

為奇函數(shù),∴當

∴a的取值范圍是


【解析】(1)展開,換元,代入可得函數(shù)解析式;(2)利用配方法,分類討論,可求f(x)的最小值;(3)方程f(x)=2a2有解,即方程t2﹣2at+2=0在 上有解,分離參數(shù),利用基本不等式可得結論.
【考點精析】本題主要考查了函數(shù)的最值及其幾何意義和函數(shù)的零點的相關知識點,需要掌握利用二次函數(shù)的性質(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲;函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了檢測某輪胎公司生產(chǎn)的輪胎的寬度,需要抽檢一批輪胎(共10個輪胎),已知這批輪胎寬度(單位: )的折線圖如下圖所示:

(1)求這批輪胎寬度的平均值;

(2)現(xiàn)將這批輪胎送去質檢部進行抽檢,抽檢方案是:從這批輪胎中任取5個作檢驗,這5個輪胎的寬度都在內(nèi),則稱這批輪胎合格,如果抽檢不合格,就要重新再抽檢一次,若還是不合格,這批輪胎就認定不合格.

求這批輪胎第一次抽檢就合格的概率;

為這批輪胎的抽檢次數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生對“兩個一百年”奮斗目標、實現(xiàn)中華民族偉大復興中國夢的“關注度”(單位:天),某中學團委在全校采用隨機抽樣的方法抽取了80名學生(其中男女人數(shù)各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男女分為兩組,再將每組學生的月“關注度”分為6組: , , , , ,得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)求抽取的80名學生中月“關注度”不少于15天的人數(shù);

(3)在抽取的80名學生中,從月“關注度”不少于25天的人中隨機抽取2人,求至少抽取到1名女生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t;生產(chǎn)1車乙種肥料的主要原料是磷酸鹽1t、硝酸鹽15t.現(xiàn)庫存磷酸鹽10t、硝酸鹽66t.已知生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為10000元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足Sn=a(Sn﹣an+1)(a為常數(shù),且a>0),且a3是6a1與a2的等差中項.
(1)求{an}的通項公式;
(2)設bn=anlog2an , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(I)討論函數(shù)的單調(diào)性;

(II)對于任意,有,求實數(shù)的范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在Rt△AOB中,∠OAB= ,斜邊AB=4.Rt△AOC可以通過Rt△AOB以直線AO為軸旋轉得到,且二面角B﹣AO﹣C是直二面角,動點D在斜邊AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當VADOC:VABOC=1:2時,求CD與平面AOB所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中, 是拋物線的焦點, 是拋物線上的任意一點,當位于第一象限內(nèi)時, 外接圓的圓心到拋物線準線的距離為.

(1)求拋物線的方程;

(2)過的直線交拋物線兩點,且,點軸上一點,且,求點的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中, , 底面 ,且.

(1)若上一點,且,證明:平面平面.

(2)若為棱上一點,且平面,求三棱錐的體積.

查看答案和解析>>

同步練習冊答案