16.已知函數(shù)f(x)=ex+ae-x為偶函數(shù),若曲線y=f(x)的一條切線的斜率為$\frac{3}{2}$,則切點(diǎn)的橫坐標(biāo)等于( 。
A.ln2B.2ln2C.2D.$\sqrt{2}$

分析 由偶函數(shù)的定義可得f(-x)=f(x),可得a=1,求出導(dǎo)數(shù),設(shè)出切點(diǎn),可得切線的斜率,解方程可得切點(diǎn)的橫坐標(biāo).

解答 解:函數(shù)f(x)=ex+ae-x為偶函數(shù),
可得f(-x)=f(x),即e-x+aex=ex+ae-x
即(ex-e-x)(a-1)=0,
可得a=1,
即f(x)=ex+e-x,
導(dǎo)數(shù)為f′(x)=ex-e-x
設(shè)切點(diǎn)為(m,n),
則em-e-m=$\frac{3}{2}$,
解得m=ln2,
故選:A.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查函數(shù)的奇偶性,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某商店預(yù)備在一個(gè)月內(nèi)分批購(gòu)買每張價(jià)值為200元的書桌共36臺(tái),每批都購(gòu)入x臺(tái)(x是正整數(shù)),且每批均需付運(yùn)費(fèi)40元,儲(chǔ)存購(gòu)入的書桌一個(gè)月所付的保管費(fèi)與每批購(gòu)入書桌的總價(jià)值(不含運(yùn)費(fèi))成正比,若每批購(gòu)入4臺(tái),則該月需用去運(yùn)費(fèi)和保管費(fèi)共520元,現(xiàn)在全月只有480元資金可以用于支付運(yùn)費(fèi)和保管費(fèi).
(1)求該月需用去的運(yùn)費(fèi)和保管費(fèi)的總費(fèi)用f(x);
(2)能否恰當(dāng)?shù)匕才琶颗M(jìn)貨的數(shù)量,使資金夠用?寫出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,則f(f($\frac{1}{e}$))=(  )
A.$\frac{1}{e}$B.eC.-$\frac{1}{e}$D.-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)M(x0,y0)在圓O:x2+y2=4上運(yùn)動(dòng)(O為圓心),N(4,0),點(diǎn)P(x,y)為線段MN的中點(diǎn).
(1)求點(diǎn)P(x,y)的軌跡方程;
(2)求點(diǎn)P(x,y)到直線3x+4y-86=0的距離的最大值和最小值.
(3)設(shè)直線l:y=x+b與圓O相交于A,B兩點(diǎn),問(wèn)當(dāng)b取何值時(shí),三角形AOB的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.等差數(shù)列{an}中,公差d≠0,若lga1,lga2,lga4也成等差數(shù)列,a5=10,則{an}的前5項(xiàng)和S5=( 。
A.40B.35C.30D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若不等式組$\left\{\begin{array}{l}x≤1\\ y≤3\\ 2x-y+λ-2≥0\end{array}\right.$表示的平面區(qū)域經(jīng)過(guò)所有四個(gè)象限,則實(shí)數(shù)λ的取值范圍是( 。
A.(-∞,4)B.[1,2]C.[2,4]D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖所示,汽車前反光鏡與軸截面的交線是拋物線的一部分,燈口所在的圓面與反光鏡的軸垂直,燈泡位于拋物線的焦點(diǎn)處,已知燈口的直徑是24cm,燈深10cm.那么燈泡與反光鏡的頂點(diǎn)(即截得拋物線的頂點(diǎn))距離為( 。
A.10 cmB.7.2 cmC.2.4 cmD.3.6 cm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ 2x-y-4≤0\\ x-y+1≥0\end{array}\right.$,則z=4x-y的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.直線l:y=kx與雙曲線C:x2-y2=2交于不同的兩點(diǎn),則斜率k的取值范圍是( 。
A.(0,1)B.$(-\sqrt{2},\sqrt{2})$C.(-1,1)D.[-1,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案