曲線y=x2-x+1在點(1,1)處的切線方程為
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:求函數(shù)導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義即可得到結(jié)論.
解答: 解:函數(shù)的導(dǎo)數(shù)為f′(x)=2x-1,
則函數(shù)在點(1,1)處的切線斜率k=f′(1)=2-1=1,
則函數(shù)在點(1,1)處的切線方程為y-1=x-1,
即y=x,
故答案為:y=x
點評:本題主要考查導(dǎo)數(shù)的幾何意義的應(yīng)用,求函數(shù)的導(dǎo)數(shù)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知y=lg(
x
10
)•lg(100x),x∈[
1
10
,10],用換元法求值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
4
-
y2
9
=1
的實軸長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前項和為Sn,且a3=5,S15=225.?dāng)?shù)列{bn}為等比數(shù)列,且首項b1=1,b4=8.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=abn,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(
x
2
+
π
3
),x∈R.
(1)求y取最大值時相應(yīng)的x的集合;
(2)該函數(shù)的圖象可由y=sinx(x∈R)的圖象經(jīng)過怎樣的平移和伸縮變換而得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3-
1
2
x2-1,x∈R,
(1)求函數(shù)f(x)在點(1,
1
2
)處的切線方程;
(2)求函數(shù)f(x)在(1,2)上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓柱的底面半徑為1cm,母線長為2cm,則圓柱的體積為
 
cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
ex+1
,g(x)=-x2+4x-3,對于任意的a,存在b使方程f(a)=g(b)成立,則b的取值范圍是( 。
A、(1,3)
B、[1,3]
C、(1,2)∪(2,3)
D、[1,2)∪(2,3]

查看答案和解析>>

同步練習(xí)冊答案