已知鈍角的三邊的長是3個連續(xù)的自然數(shù),其中最大角為,則=_____
解析試題分析:不妨設三邊滿足a<b<c,滿足a=n-1,b=n,c=n+1(n≥2,n∈N).根據(jù)余弦定理以及角C為鈍角,建立關于n的不等式并解之可得0<n<4,再根據(jù)n為整數(shù)和構成三角形的條件,可得出本題答案。解:不妨設三邊滿足a<b<c,滿足a=n-1,b=n,c=n+1(n≥2,n∈N).∵△ABC是鈍角三角形,∴可得∠C為鈍角,即cosC<0,由余弦定理得:(n+1)2=(n-1)2+n2-2n(n-1)•cosC>(n-1)2+n2,即(n-1)2+n2<(n+1)2,化簡整理得n2-4n<0,解之得0<n<4,∵n≥2,n∈N,∴n=2,n=3,當n=2時,不能構成三角形,舍去,當n=3時,△ABC三邊長分別為2,3,4,故答案為
考點:解三角形
點評:本題屬于解三角形的題型,涉及的知識有三角形的邊角關系,余弦函數(shù)的圖象與性質以及余弦定理,屬于基礎題.靈活運用余弦定理解關于n的不等式,并且尋找整數(shù)解,是解本題的關鍵.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com