(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點,且直線AB的斜率恒大于1,求實數(shù)m的取值范圍。
(Ⅰ)
在上單調(diào)遞增,在上單調(diào)遞減.
(Ⅱ) .
解析試題分析:(Ⅰ)f(x)的定義域為, …………2分
時,>0, 在上單調(diào)遞增;
時,<0, 在上單調(diào)遞減.
綜上所述:
在上單調(diào)遞增,在上單調(diào)遞減.
……………5分
(Ⅱ) 依題意,設(shè),不妨設(shè),
則恒成立,…………6分
,則恒成立,
所以恒成立,
令……………8分
則g(x)在為增函數(shù),
所以,對恒成立,…………10分
所以,對恒成立,
即,對恒成立,
因此.……………12分
考點:本題主要考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極值,二次函數(shù)的圖象和性質(zhì)。
點評:典型題,本題屬于導(dǎo)數(shù)應(yīng)用中的基本問題,(2)涉及恒成立問題,轉(zhuǎn)化成求函數(shù)的最值,這種思路是一般解法,往往要利用“分離參數(shù)法”,本題最終化為二次函數(shù)最值問題,體現(xiàn)考題“起點高,落點低”的特點。涉及對數(shù)函數(shù),要特別注意函數(shù)的定義域。
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在 點處的切線與函數(shù)的圖象在點處的切線重合.
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)若,滿足,求實數(shù)m的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線過點P(1,3),且在點P處的切線
恰好與直線垂直.求 (Ⅰ) 常數(shù)的值; (Ⅱ)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè),點P(,0)是函數(shù)的圖象的一個公共點,兩函數(shù)的圖象在點P處有相同的切線.
(1)用表示a,b,c;
(2)若函數(shù)在(-1,3)上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)的零點的集合為{0,1},且是f(x)的一個極值點。
(1)求的值;
(2)試討論過點P(m,0)與曲線y=f(x)相切的直線的條數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在區(qū)間[0,1]上是增函數(shù),在區(qū)間上是減函數(shù),又
(Ⅰ)求的解析式;
(Ⅱ)若在區(qū)間(m>0)上恒有≤成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知函數(shù)(其中e為自然對數(shù))
(1)求F(x)="h" (x)的極值。
(2)設(shè) (常數(shù)a>0),當x>1時,求函數(shù)G(x)的單調(diào)區(qū)間,并在極值存在處求極值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知函數(shù)f(x)=lnx+
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)mR,對任意的a∈(-l,1),總存在xo∈[1,e],使得不等式ma - (xo)<0成立,求實數(shù)m的取值范圍;
(Ⅲ)證明:ln2 l+ 1n22,+…+ln2 n>∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分) 已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)當時,判斷方程實根個數(shù).
(3)若時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com