若點(diǎn)P到點(diǎn)的距離與它到直線(xiàn)y+3=0的距離相等,則P的軌跡方程為 (  )
A.B.C.D.
C

試題分析:根據(jù)拋物線(xiàn)的定義可知,條件為以為焦點(diǎn)的拋物線(xiàn),所以軌跡為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的左焦點(diǎn)為,右焦點(diǎn)為,過(guò)的直線(xiàn)交橢圓于兩點(diǎn), 的周長(zhǎng)為8,且面積最大時(shí),為正三角形.

(1)求橢圓的方程;
(2)設(shè)動(dòng)直線(xiàn)與橢圓有且只有一個(gè)公共點(diǎn),且與直線(xiàn)相交于點(diǎn),證明:點(diǎn)在以為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,左右焦點(diǎn)分別為,且.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)的直線(xiàn)與橢圓相交于兩點(diǎn),且,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓與橢圓中心在原點(diǎn),焦點(diǎn)均在軸上,且離心率相同.橢圓的長(zhǎng)軸長(zhǎng)為,且橢圓的左準(zhǔn)線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為,已知點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn).

⑴求橢圓與橢圓的方程;
⑵設(shè)點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的下頂點(diǎn),若直線(xiàn)剛好平分,求點(diǎn)的坐標(biāo);
⑶若點(diǎn)在橢圓上,點(diǎn)滿(mǎn)足,則直線(xiàn)與直線(xiàn)的斜率之積是否為定值?若是,求出該定值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,離心率為,P是橢圓上一點(diǎn),且面積的最大值等于2.
(1)求橢圓的方程;
(2)直線(xiàn)y=2上是否存在點(diǎn)Q,使得從該點(diǎn)向橢圓所引的兩條切線(xiàn)相互垂直?若存在,求點(diǎn)Q的坐標(biāo);若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)的焦點(diǎn)為,過(guò)點(diǎn)的直線(xiàn)交拋物線(xiàn)于點(diǎn).
(Ⅰ)若(點(diǎn)在第一象限),求直線(xiàn)的方程;
(Ⅱ)求證:為定值(點(diǎn)為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線(xiàn)與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線(xiàn)與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線(xiàn)l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿(mǎn)足   ,其中N為橢圓的下頂點(diǎn),求直線(xiàn)l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)是雙曲線(xiàn)右支上一點(diǎn),是雙曲線(xiàn)的左焦點(diǎn),且雙曲線(xiàn)的一條漸近線(xiàn)恰是線(xiàn)段的中垂線(xiàn),則該雙曲線(xiàn)的離心率是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知拋物線(xiàn)上一點(diǎn)P到y(tǒng)軸的距離為5,則點(diǎn)P到焦點(diǎn)的距離為(    )
A.5B.6C.7D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案