將函數(shù)y=2sin2x圖象上的所有點(diǎn)向右平移
π
6
個單位,然后把圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的
1
2
倍,(縱坐標(biāo)不變)得到y(tǒng)=f(x)的圖象,則f(x)等于( 。
A、2sin(x-
π
6
B、2sin(x-
π
3
C、2sin(4x-
π
6
D、2sin(4x-
π
3
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:直接由函數(shù)圖象的平移得答案.
解答: 解:將函數(shù)y=2sin2x圖象上所有點(diǎn)向右平移
π
6
個單位,所得圖象的解析式為y=2sin(2x-
π
3
),
然后把所得圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),得到y(tǒng)=f(x)的圖象的解析式為f(x)=2sin(4x-
π
3
).
故選:D.
點(diǎn)評:本題考查了y=Asin(ωx+φ)型函數(shù)圖象的平移,注意變化順序是關(guān)鍵,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014年巴西世界杯剛結(jié)束,某足球協(xié)會為了調(diào)查球迷對本屆世界杯的了解情況,組織了“世界杯你問我答一百問”活動,該協(xié)會從參加活動的球迷(人數(shù)不少于1000人)中隨機(jī)抽取12名球迷.進(jìn)行世界杯知識問卷測試,測試成績(百分制)以莖葉圖形式表示如右圖所示,根據(jù)主辦方標(biāo)準(zhǔn).測試成績低于80分的為“偽球迷”,不低于80分的為“真球迷”.
(1)寫出測試成績的中位數(shù)和平均數(shù),并根據(jù)所求數(shù)據(jù)對參加活動的球迷情況進(jìn)行評估:
(2)將頻率視為概率,根據(jù)樣本估計(jì)總體的思想,若再這批球迷中任選4人進(jìn)行世界杯知識問卷調(diào)查,求至多有1人是“真球迷”的概率.
(3)從抽取的12名球迷中隨機(jī)選取3人,記ξ表示“真球迷”的人數(shù),求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:“x>3”是“x2>9”的充要條件,命題q:“?x0∈R,x0-2>0”的否定是“?x0∈R,x0-2<0”( 。
A、“p∨q”為真
B、“p∧q”為真
C、p真q假
D、p,q均為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD是底面為平行四邊形,面PAB⊥面ABCD,△PAB為正三角形,且AB=
1
2
AD=2,以AD為直徑的圓于BC交于點(diǎn)B,點(diǎn)E,F(xiàn)分別是AD,PC的中點(diǎn).
(1)求證:EF⊥平面PBD;
(2)求三棱錐C-BEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1,問在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(60°+α)=
1
3
,且α為第三象限角,則cos(30°-α)+sin(30°-α)的值為( 。
A、
-2
2
-1
3
B、
2
2
+1
3
C、
-2
2
+1
3
D、
2
2
-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
x+2
x+1
<0的解集為{x|a<x<b},點(diǎn)A(a,b)在直線mx+ny+1=0上,其中mn>0,則
2
m
+
1
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求斜率為3,且被圓x2+y2=4截得弦長為2的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、?x∈R,sinx+cosx>2
B、m2+n2=0(m,n∈R),則m=0且n=0
C、“x=4”是“x2-3x-4=0”的充要條件
D、“0<ab<1”是“b<
1
a
”的充分條件

查看答案和解析>>

同步練習(xí)冊答案