(本小題滿分12分)某家具廠有方木料90,五合板600,準備加工成書桌和書櫥出售。已知生產(chǎn)每張書桌需要方木料0.1、五合板2;生產(chǎn)每個書櫥需要方木料0.2、五合板1 .   出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元,怎樣安排生產(chǎn)可使所得利潤最大?

 

【答案】

該家具廠加工書桌100張,書櫥400張,可使總利潤最大為56000元。

【解析】用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標函數(shù)是關鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標函數(shù)的最優(yōu)解.

這是一個實際生活中的最優(yōu)化問題,可根據(jù)條件列出線性約束條件和目標函數(shù),畫出可行域求解.(1)由于只安排生產(chǎn)書桌,則根據(jù)已知條件,易得生產(chǎn)書桌的最大量,進一步得到利潤.(2)由于只安排生產(chǎn)書櫥,則根據(jù)已知條件,易得生產(chǎn)書櫥的最大量,進一步得到利潤.

(3)可設出生產(chǎn)書桌和書櫥的件數(shù),列出目標函數(shù),根據(jù)材料限制列出約束條件,畫出可行域,根據(jù)線性規(guī)劃的處理方法,即可求解.

解:設該家具廠加工書桌張,書櫥張,總利潤為z元, 則依題意有,

 -----------5分

   --------8分

當直線經(jīng)過點A時,截距最大,此時取最大值。         --------9分

  解得   即 A(100,400)     -------10分

代入目標函數(shù)得        ------12分

答:該家具廠加工書桌100張,書櫥400張,可使總利潤最大為56000元。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:

(I)他們選擇的項目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案