(1)你能得到怎樣的結(jié)論?并證明;
(2)是否存在一個正數(shù)T,使對任意的自然數(shù)n,恒有f(n)<T成立?并證明你的結(jié)論。
數(shù)列1,3,7,15,…。通項公式為an=2n-1,數(shù)列,1,,2,…通項公式為,∴
猜想:。
證明:(1)當n=1時,不等式成立。 (2)假設(shè)當n=k時不等式成立,即。則 ∴ 當n=k+1時不等式也成立。 據(jù)(1)、(2)對任何nÎN*原不等式均成立。 (2)對任意給定的正意T,設(shè)它的整數(shù)部分為T¢,記m=T¢+1,則m>T。由(1)知:f(22m-1)>m,∴ f(22m-1)>T,這說明,對任意給定的正數(shù)T,總能找到正整數(shù)n(如可取假設(shè)中n為2m),使得f(n)>T。∴ 不存在正數(shù)T,使得對任意的正整數(shù)n,總有f(n)<T成立。 |
科目:高中數(shù)學(xué) 來源: 題型:
2π |
3 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2π |
3 |
π |
6 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)f,g都是由A到A的映射,其對應(yīng)法則如下表(從上到下): 表1映射f的對應(yīng)法則
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)f,g 都是由A到A的映射(其中A={1,2,3}),其對應(yīng)法則如下表,則f[g(3)]等于( 。
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)f,g都是由A到A的映射,其對應(yīng)法則如下表(從上到下): 表1 映射f的對應(yīng)法則
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com