.設(shè)f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù).當(dāng)x<0時,f′(x)g(x)+f(x)g′(x)> 0,且g(-3)=0,則不等式f(x)g(x)<0的解集是( )
A.(-3,0)∪(3,+∞)
B.(-3,0)∪(0,3)
C.(-∞,-3)∪(3,+∞)
D.(-∞,-3)∪(0,3)
D
【解析】
試題分析:【解析】
令h(x)=f(x)g(x),則h(-x)=f(-x)g(-x)=-f(x)g(x)=-h(x),因此函數(shù)h(x)在R上是奇函數(shù).
①∵當(dāng)x<0時,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0時單調(diào)遞增,
故函數(shù)h(x)在R上單調(diào)遞增.
∵h(yuǎn)(-3)=f(-3)g(-3)=0,∴h(x)=f(x)g(x)<0=h(-3),∴x<-3.
②當(dāng)x>0時,函數(shù)h(x)在R上是奇函數(shù),可知:h(x)在(0,+∞)上單調(diào)遞增,且h(3)=-h(-3)=0,
∴h(x)<0,的解集為(0,3).
∴不等式f(x)g(x)<0的解集是(-∞,-3)∪(0,3).
故答案為(-∞,-3)∪(0,3)..
考點(diǎn):構(gòu)造函數(shù),函數(shù)的奇偶性單調(diào)性
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省高一9月月考數(shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/GZSX/web/STSource/2015012906005665245009/SYS201501290601004026586422_ST/SYS201501290601004026586422_ST.002.png">,對任意都有,又,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省高二上學(xué)期第一次檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題
△ABC的內(nèi)角的對邊分別為
(1)求;
(2)若求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年福建省高二上學(xué)期第一次檢查文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè),且,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年甘肅省高二9月月考數(shù)學(xué)試卷試卷(解析版) 題型:填空題
在等比數(shù)列中,,則數(shù)列的通項(xiàng)公式_____________,設(shè),則數(shù)列的前項(xiàng)和_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆吉林省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
6人站成一排,甲、乙、丙3個人不能都站在一起的排法種數(shù)為( )
A.720 B.144 C.576 D.684
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年甘肅省高二9月月考數(shù)學(xué)試卷試卷(解析版) 題型:選擇題
甲、乙、丙等五人站成一排,要求甲、乙均不與丙相鄰,則不同的排法為( )
A.72 B.36 C.52 D.24
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年甘肅省高一上學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)已知集合,.
(1)當(dāng)時,求集合,;
(2)若,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年甘肅省天水市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
函數(shù)f(x)是R上的偶函數(shù),且當(dāng)x>0時,函數(shù)的解析式為
.
(1)求f(-1)的值;
(2)求當(dāng)x<0時,函數(shù)的解析式;
(3)用定義證明f(x)在(0,+∞)上是減函數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com