8.設(shè)直線l經(jīng)過(guò)橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點(diǎn)且傾斜角為45°,若直線l與橢圓相交于A,B兩點(diǎn),則|AB|=(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{8}{5}$

分析 直線l的方程為$y=x-\sqrt{3}$,聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=x-\sqrt{3}}\end{array}\right.$,得5x2-8$\sqrt{3}x$+8=0,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式能求出|AB|.

解答 解:∵直線l經(jīng)過(guò)橢圓$\frac{x^2}{4}+{y^2}=1$的右焦點(diǎn)且傾斜角為45°,
∴直線l過(guò)點(diǎn)F($\sqrt{3}$,0),斜率k=tan45°=1,
∴直線l的方程為$y=x-\sqrt{3}$,
聯(lián)立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{y=x-\sqrt{3}}\end{array}\right.$,得5x2-8$\sqrt{3}x$+8=0,
$△=(-8\sqrt{3})^{2}$-160=32>0,
設(shè)A(x1,y1),B(x2,y2),則${x}_{1}+{x}_{2}=\frac{8\sqrt{3}}{5}$,${x}_{1}{x}_{2}=\frac{8}{5}$,
∴|AB|=$\sqrt{(1+1{\;}^{2})[(\frac{8\sqrt{3}}{5})^{2}-4×\frac{8}{5}]}$=$\frac{8}{5}$.
故選:D.

點(diǎn)評(píng) 本題考查弦長(zhǎng)的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意根的判別式、韋達(dá)定理、弦長(zhǎng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某電視臺(tái)組織部分記者,用“10分制”隨機(jī)調(diào)查某社區(qū)居民的幸福指數(shù),現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福指數(shù)的得分(以小數(shù)點(diǎn)的前一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)若幸福指數(shù)不低于9分,則稱(chēng)該人的幸福指數(shù)為“極幸!;若幸福指數(shù)不高于8分,則稱(chēng)該人的幸福指數(shù)為“不夠幸!保F(xiàn)從這16人中幸福指數(shù)為“極幸!焙汀安粔蛐腋!钡娜酥腥我膺x取2人,
(i) 請(qǐng)列出所有選出的結(jié)果;
(ii) 求選出的兩人的幸福指數(shù)均為“極幸!钡母怕剩

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.不等式x2+ax-b<0的解集是(2,3),則bx2-ax-1>0的解集是( 。
A.$(\frac{1}{3},\frac{1}{2})$B.$(\frac{1}{6},1)$C.$(-\frac{1}{2},-\frac{1}{3})$D.$(-∞,-\frac{1}{2})∪(-\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某醫(yī)藥研究所開(kāi)發(fā)一種新藥,據(jù)監(jiān)測(cè),如果成人按規(guī)定的劑量服用,服用藥后每毫升中的含藥量y(微克)與服藥的時(shí)間t(小時(shí))之間近似滿足如圖所示的曲線,其中OA是線段,曲線AB是函數(shù)y=kat(t≥1,a>0,且k,a是常數(shù))的圖象.
(1)寫(xiě)出服藥后y關(guān)于t的函數(shù)關(guān)系;
(2)據(jù)測(cè)定,每毫升血液中的含藥量不少于2微克時(shí)治療疾病有效.假設(shè)某人第一次服藥為早上6:00,為保持療效,第二次服藥最遲應(yīng)當(dāng)在當(dāng)天幾點(diǎn)鐘?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.對(duì)于函數(shù)f(x)=$\frac{2}{{3}^{x}+1}$+m,(m∈R)
(1)判斷函數(shù)f(x)的單調(diào)性,并用定義證明
(2)是否存在實(shí)數(shù)m使函數(shù)f(x)為奇函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)條件p:2x2-3x+1≤0;條件q:(x-a)[x-(a+1)]≤0.若¬p是¬q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.現(xiàn)有100ml的蒸餾水,假定里面有一個(gè)細(xì)菌,現(xiàn)從中抽取20ml的蒸餾水,則抽到細(xì)菌的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖(1)所示,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分別為線段PC、PD、BC的中點(diǎn),現(xiàn)將△PDC折起,使平面PDC⊥平面ABCD(圖(2)).
(1)求證:AP∥平面EFG;
(2)若點(diǎn)Q是線段PB的中點(diǎn),求證:PC⊥平面ADQ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=AB=AC=1,E、F分別是CC1、BC的中點(diǎn),AE⊥A1B1
(1)證明:AB⊥AC
(2)在棱A1B1上是否存在一點(diǎn)D,使得平面DEF與平面ABC所成銳二面角的余弦值為$\frac{\sqrt{14}}{14}$?若存在,說(shuō)明點(diǎn)D的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案