已知△ABC的兩頂點坐標A(-1,0),B(1,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點分別為P,Q,R,|CP|=1(從圓外一點到圓的兩條切線段長相等),動點C的軌跡為曲線M.
(I)求曲線M的方程;
(Ⅱ)設直線BC與曲線M的另一交點為D,當點A在以線段CD為直徑的圓上時,求直線BC的方程.
考點:直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(I)由題意,可得曲線M是以A,B為焦點,長軸長為4的橢圓(挖去與x軸的交點),從而可得求曲線M的方程;
(Ⅱ)設與直線BC的方程,與橢圓方程聯(lián)立,消x,利用韋達定理,結(jié)合
AC
AD
=0,即可求直線BC的方程.
解答: 解:(I)由題知|CA|+|CB|=|CP|+|CQ|+|AP|+|BQ|=2|CP|+|AB|=4>|AB|,
所以曲線M是以A,B為焦點,長軸長為4的橢圓(挖去與x軸的交點),
所以a=2,c=1,
所以b=
3
,
所以曲線M:
x2
4
+
y2
3
=1
(y≠0)為所求.---------------(4分)
(Ⅱ)注意到直線BC的斜率不為0,且過定點B(1,0),

設直線BC的方程為x=my+1,C(x1,y1),D(x2,y2),
與橢圓方程聯(lián)立,消x得(4+3m2)y2+6my-9=0,
所以y1+y2=-
6m
3m2+4
,y1y2=-
9
3m2+4
-------------------------------------(8分)
因為
AC
=(my1+2,y1),
AD
=(my2+2,y2),
所以
AC
AD
=(my1+2)(my2+2)+y1y2=
7-9m2
3m2+4

注意到點A在以CD為直徑的圓上,所以
AC
AD
=0,即m=±
7
3
,-----(11分)
所以直線BC的方程3x+
7
y-3=0
3x-
7
y-3=0
為所求.------(12分)
點評:本題考查橢圓的方程,考查直線與橢圓的位置關(guān)系,考查向量知識的運用,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設Sn為等差數(shù)列{an}的前n項和,已知S5=5,S9=27,則S7=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知F是雙曲線
x2
3a2
-
y2
a2
=1(a>0)
的右焦點,O為坐標原點,設P是雙曲線C上一點,則∠POF的大小不可能是( 。
A、15°B、25°
C、60°D、165°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙丙三人獨立地破譯一份密碼,他們每人譯出此密碼的概率為0.25,假定隨機變量x表示譯出此密碼的人數(shù),求E(x),D(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點E是棱DD1上的動點,F(xiàn),G分別是BD,BB1的中點.
(1)求證:EF⊥CF.
(2)當點E是棱DD1上的中點時,求異面直線EF與CG所成角的余弦值.
(3)當二面角E-CF-D達到最大時,求其余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD與CDEF均為正方形,平面ABCD⊥平面CDEF.
(Ⅰ)求證:ED⊥平面ABCD;
(Ⅱ)求二面角D-BE-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖直角梯形OABC中,∠COA=∠OAB=90°,OC=2,OA=AB=1,SO⊥平面OABC,SO=1,分別以OC,OA,OS為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求
SC
OB
夾角的余弦值;
(Ⅱ)求OC與平面SBC夾角的正弦值;
(Ⅲ)求二面角S-BC-O.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若不等式
3x2+2x+2
x2+x+1
>k對一切實數(shù)x恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(
3
sin2x+2,cosx)
,
n
=(1,2cosx)
,設函數(shù)f(x)=
m
n
,x∈R.
①求f(x)的最大值以及此時相應的自變量x的集合;
②在△ABC中,a、b、c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為
3
2
,求a的值.

查看答案和解析>>

同步練習冊答案